On Communication Optimization in Grid Access
Middleware for Handheld Devices

Maria Riaz, Saad Liaquat Kiani, Anjum Shehzad, Sungyoung Lee

Computer Engineering Department, Kyung Hee Univerity
1, Seocheon, Giheung, Yongin, Gyeonggi 449-701 KOREA
{maria, saad, anjum, sylee}@oslab.khu.ac.kr

Abstract. This paper describes the optimization techniques for inter-
action of constrained handheld devices with Grid services by employing
the concepts of Jini Surrogate Architecture. Handheld devices in gen-
eral do not posses enough computational and communicational assets to
meet the criteria for utilizing the Grid infrastructure services. We present
the design of a middleware approach! that aids handheld devices in this
regard by wrapping the computational and resource intensive tasks in
a surrogate and shifting them to a capable machine for execution. We
analyze the reduction in computational intensity at the handheld device,
achieved through task delegation, and present the optimization of com-
munication mechanisms that reduce the load on a resource constrained
handheld device.

1 Introduction

With ever decreasing costs and increasing functionality in small sized chips,
handheld devices e.g., Personal Digital Assistants (PDA) and smart phones are
becoming mainstream now. A broad spectrum of internet services is already be-
coming available for a mobile user, Grid [1] computing and mobile computing
however remain two disjoint phenomena as yet, keeping users of both from some
propitious mutual benefits. While mobile elements will improve in absolute abil-
ity, they will always be resource-deprived relative to their static counterparts
(desktops/workstations). In [2], the author argues that for a given cost and level
of technology, considerations of weight, power, size and ergonomics will exact a
penalty in computational resources such as processor speed, memory size, and
disk capacity. These devices do not have enough resources in effect to utilize the
Grid services comprehensively.

Consider a physicist who needs to see graph plots of data produced as a result
of high energy collisions between atoms on his PDA. The amount of information
in data-stores, from which graphs are to be generated, will be in the range of
several gigabytes or even terabytes. Constraints that hinder handheld devices
from such interactions include limited network bandwidth, CPU power, memory

! This work is supported by grant No. R01-000-00357-0 from Korea Science and En-
gineering Foundation (KOSEF).

(small network buffers) and intermittent connectivity. Keeping the limitations in
mind, we aim to define a middleware approach that will allow handheld devices,
e.g. PDA units, to interact with Grid services with inducing minimal burden on
the device itself. We demonstrate a solution based on Jini Network Technology’s
[3] Surrogate Architecture [4] which provides a network framework in which a
device can deploy a client or a service on a device other than itself.

Our proposed middleware builds upon the concepts of Jini Surrogate Archi-
tecture and ports the functionality of accessing Grid network and services to a
handheld device. A handheld device (hereafter referred to as 'Device’), wishing
to be a service host or to interact with services hosted elsewhere and unable
to do so itself, is allowed to deploy the actual functionality at an intermediate
powerful machine and receive the messages/results in a form that is in keeping
with its hardware resources. The ’service’ or ’client’ process, transferred from the
device, is called a ’surrogate’. The middleware at intermediate machine, which
provides the execution environment and access to extensive resources for the
handheld device’s surrogate, is called the ’SurrogateHost” or simply 'Host’. An
interconnect, defined as ”logical and physical connection between the surrogate
host and a device” [5], also needs to exist.

Since we are stepping in a new realm of Grid access through handheld de-
vices, many design and performance challenges need to be considered and coun-
tered. In the domain of Grid infrastructure, where services and data resources
are replicated across geographical boundaries [6, 7], communication costs can
be minimized by careful selection of intermediate network. The communication
mechanisms involved in job submission, execution and resource access are opti-
mized at three levels: 1) Selection of the host to which the device will submit the
job/task for execution, 2) Resource access by the surrogate during execution and
3) filtering of and optimization of intermediate results that are to be transferred
to the device from the remote machine.

An overview of our middleware approach is presented in section 2. Section
3 deals with the communication mechanisms and the proposed optimizations
in the middleware. Prototype implementation and test results are presented in
section 4. We conclude our discussion in section 5.

2 The Grid Access Middleware Architecture

The architecture is derived from the fact that any handheld mobile device hav-
ing wired/wireless connectivity can utilize the functionality of its more capable
computing peers for resource demanding tasks such as Grid service access, with
the device only managing less intensive tasks of displaying the tailored results
returned.

Figure 1 shows the proposed middleware framework which consists of three
distinct stacks deployed at the GatewaySurrogateHost, the Device and the sur-
rogate. These are discussed one by one in the subsequent paragraphs.

The GatewaySurrogateHost is an extension of the basic SurrogateHost with
added functionality for Grid access through the AccessGateway. It overcomes

the major technical hurdles that keep the Devices from exploiting the benefits
made available by the computational and data Grids [8, 9] by providing an
interface to the Devices on one hand and to the Grid services at the other. The
middleware at these hosts consists of three main sub-modules. Host Adapter sub-
module enables the initial communication between the device and the host for
agreeing on the transfer of surrogate. Once the surrogate is available at the host,
it is delivered to the ExecutionEngine sub-module. SurrogateWrapper exposes
the functionality of a surrogate required to facilitate its execution at the host,
Dispatcher allocates a separate thread for execution, and Resource Manager
resolves the resources (e.g., memory, disk space etc) required by surrogate during
it’s lifetime. The AccessGateway sub-module provides interface to the external
resources e.g. discovery of available Grid services and resources. Administrators
can restrict the number of surrogates, memory, bandwidth allocation etc on
per surrogate basis at the host. Security policies can be configured based on
public/private key pairs and digital certificates.

Apphication Level
Surrogate Stack
Surrogate Wrapper
s’ | | KespAlive — Data Registrabon Surrogate Funchonaity
| | SRR Srncie - SEAI A A Dispatcher
! Keep Alve Deta
[Surrogate Handler Notifier Handler Resource Manager
It Device Stack : Execution Engine
.‘\ .-I %4
3| 7 <

2
\

Surrogate !

Jransfer 1
Handheld A ‘ ‘

Devices

!
!
|
\'\.
(9}
2
o
3
o
S

Resource access

auibug uognaexy

Kemales) sse00y

oF
8
Qi
¥
Jg)depy 1504

Local Resources at Host

Deployment View Gateway Surrogate Host

Fig. 1. Proposed Grid Access Middleware Stacks at the Device, Surrogate and Host

At the Device, a lightweight middleware stack is provided for facilitating the
registering and communication with its exported surrogate. The stack consists
of a SurrogateHandler module which has three sub modules for providing ser-
vices complementary to the middleware at the GatewaySurrogateHost. Registra-
tionHandler discovers, selects and registers with the host, and transfers the sur-
rogate. Once the surrogate is transferred, KeepAliveMonitor keeps track of the
status of the surrogate. DataHandler retrieves the results from the surrogate-side
corresponding module, and makes them available for the application executing
at the device which simply displays the results.

A generic surrogate for Grid service access contains interconnect-specific com-
munication mechanism, persistency safe behavior, and migration ability. This
functionality is incorporated at the top layer of the surrogate stack. The surro-
gate has complementary modules for communicating with the middleware stack
at the Device. KeepAliveNotifier module sends notifications about the surro-
gate’s status at regular intervals. DataHandler module performs intermediate
computations, filtering and trimming of results from surrogate to a format pre-
specified by the application running at the device. Surrogate to be transferred
can be stored at the Device or at a URL accessible store e.g. a web server or
FTP server.

This distributed middleware approach helps the GatewaySurrogateHost to
announce its presence, enables Devices to discover available hosts and request
to transfer their surrogates, and allows surrogates to communicate status and
result information back to their respective devices.

3 Communication Mechanisms and Optimizations

There is a critical requirement of clients/devices being able to discover and com-
municate with available GatewaySurrogateHosts in an optimal manner. Absence
of a discovery mechanism has the potential to pose as a single point of failure.
For reasons of efficiency and fault tolerance, multiple discovery techniques are
provided in the architecture. The foremost method of discovery is multicast
announcements from hosts which allows discovery of hosts within the network
boundary. Provision for unicast discovery is also incorporated in order to dis-
cover a geographically remote host that is closer to a resource of interest. HT TP
based discovery is provided as a supplement where all available hosts register
with a web service [10] hosted on a known location.

3.1 Attributes Based Dynamic Host and Resource Selection

The surrogate paradigm will function most efficiently when the network delays
between the device/client side and surrogate are minimal. Moreover, efficiency
also depends on the proximity of surrogate to the service being accessed. Support
is provided in the architecture (refer to Ttable 1) to optimize both proximity
based parameters. Each GatewaySurrogateHost will keep track of its access qual-
ity towards known/available Grid service hosts/networks.

Table.1. Attributes published by a surrogate host

Name Description

Host Identification ID, Location, Network address and Discovery /Listening
port for incoming Device/Client requests

Host Resources Currently Hosted Surrogates, Available/Allocated Re-
sources e.g. CPU, Memory, Storage, Throughput

Host Environment JVM availability, version; SOAP/WSDL [11, 12] etc

Network Resources Grid services available through this Host, Proximity to ser-
vice and client side (in terms of network access)

Table 1 lists the attributes of the host computed and advertised allowing
clients to select hosts based on location, proximity and other desired features.
This poses a certain one time per start-up burden, but improves the overall
runtime performance. Following pseudo-code describes a selection approach for
1) host selection at device and 2) resource selection by surrogate:

1) Discover available Surrogate Hosts
Listen for Multicast Announcements from Hosts
Query Web Service W for available Hosts
Select Optimal GatewaySurrogateHost
For all discovered Hosts
Retrieve attributes
Choose best host through function ’f’
Transfer Surrogate
2) Retrieve Resource List from GatewaySurrogateHost
For all known Resources
Retrieve Resource attributes
Choose optimal resource

In order to elaborate the selection approach, let D be a set of Devices willing
to transfer surrogates and let G be a set of available GatewaySurrogateHosts:

D = {dy,da,ds,...d,} (1)

G = {gla927g37“'gn} (2)

Let R be the resources known to a particular GatewaySurrogateHost g; that
might be of interest to arriving surrogates:

R={r1,ro,r3,..7n} (3)

where Ry, will a subset of resources R known to host g;. Set Ag,, of attributes
associated with a GatewaySurrogateHost gi is as follows:

Agi = {Ti,degingngi} (4)

where T}, 4, represents the network throughput available between the device dj
and a host gi, M, represents the available memory resources and Cj, represent
the average idle CPU availability. Basing on the type of the surrogate, a subset
of these parameters is chosen to decide the most suitable host for the surrogate
of the device. A device with a CPU intensive surrogate task can choose a Host,
as follows:

gset = mazg,ec{f(Cy;s Ng,)} ()

where gse; is the selected GatewaySurrogateHost as a function of processing
power and number of surrogates hosted to avoid contention for CPU. Simi-
larly, a number of attributes can be retrieved from job schedulers and resource
managers in generic grid infrastructures e.g. approximate wait time (AWT), net-
work throughput, CPU availability, wait queue length; [13] describes a ’resource

utilization status’ (RUS) being maintained by a grid computing facilities that
indicates resource availability. Associated with each resource r;:

A’I“i = {Trk Y CTk) RUS’I“k? "'} (6)

where T, is the network throughput [14] available between the resource and
the GatewaySurrogateHost and C,, is the CPU availability at the resource host.
The surrogate can select the resource to access as:

Tsel = f{Ah} (7)

where 7 is selected by applying a function over attributes of available resources.
The attributes of a host and resource along with corresponding selection func-
tions as shown in (5) and (7) helps in achieving the first two of the three opti-
mizations we aim to achieve. They not only help in initial selection of host and
resource but also help to decide migration pattern of a surrogate as discussed in
the following section.

3.2 Surrogate Migration

The Generic Surrogate is equipped with the ability to migrate. This provision
is given for those Surrogates which have to access geographically distributed
services. It serves the interest of efficiency that services be accessed from locations
where delays can be minimized. In addition to this, a GatewaySurrogateHost
can become over-burdened and can request the surrogates to pack and leave,
instead of terminating them. Surrogate migration can be achieved by employing
the DIAMOnDS [15] system which provides a framework for code migration by
using the marshalling support in the Java programming language. The decision
of the surrogate to migrate is based on one or more of the conditions described
in Table 2.

Table.2. Migration conditions overview

Condition Cause Description

A The resource access quality (a) Network bottleneck (b) Re-
from current execution host is source to be accessed is far away
not optimal (in terms of network costs)

B The device to host communi- (a) The device has moved away
cation has become slow (b) Network conditions have de-

teriorated

C Current execution host is over (a)Too many surrogates (b) Ex-

burdened cessive CPU utilization (c) Low

on memory etc

Condition A. Assuming the surrogate in question is executing on gateway
surrogate host g; it can retrieve the parameter 7;, from g; which gives the
network thorough put between the host and the resource. Other parameters e.g.

RU S}, and C,,, give the information required by the surrogate to deduce if access
parameters are below a minimal acceptable value M 4. If resource access quality
is below My, the surrogate can migrate (8). Condition A can be represented
with the following expression:

F Ty, Cp RUS,, ... }) < My (8)

where f is a application specific function that computes current access quality
basing on available resource attributes. Applications will define different weights
to the attributes over which f is computed depending upon the importance of
each attribute to the task being performed by the surrogate.

The requirement of migration may not only be due to poor access quality
but also because the surrogate has finished accessing resource X and now wants
to access resource Y which can be better accessed from some other host. In such
a case:

forG[1 —n)]
choose max (f ({T,,Cr., RUS;,,...}) > My)
migrate (g;) ; 9)

Condition B. A mobile handheld device may move away from the surrogate
during the course of surrogate’s execution. In case dedicated connectivity is
required for task execution, the surrogate, upon explicit notification from the
device, can be migrated to a host that is closer to the device’s new location. The
attribute set Ag, gives the attributes associated with the device and the host on
which its surrogate is executing. The surrogate may also migrate if it finds that
the communication quality with the device over a specific interconnect is below
the minimal acceptable value Mp.

Migrate(g;); (10)

if(Ty,a;, < Mp)
for G[1 —n]
choose max(Ty, 4, > Mp);
migrate (g;) ; (11)

Condition C. The surrogate can query the current execution host and its load
history as shown in (4). The host can either ask the surrogate to migrate or the
surrogate can compute that execution environment attributes have fallen below
the minimal acceptable level M. If the surrogate has to take the decision itself,
the condition it will monitor is:

Z’f(Tgudengngyi) < Mc¢ (12)

where f is a case specific function over host attributes used by the surrogate to
determine host’s execution environment quality.

4 Implementation Overview

Before this design is tested for actual Grid service interaction, it is necessary to
validate its viability in a general scenario. The scenario of choice should involve
considerable CPU, memory and network utilization. Simple Network Manage-
ment Protocol [16] is a widely accepted and utilized way of monitoring network
entities.

We have chosen to verify our approach by monitoring a remote server for
14 system statistics periodically, after every few seconds. Handheld device has
network connectivity through a wireless LAN interface. A desktop machine is
configured to act as a GatewaySurrogateHost. The results of these queries are
to be displayed on the handheld device in the forms of dynamic line, bar and pie
charts/graphs. Performance of the device and the impact of the running system
will be measured and the benefits and shortcomings of the approach will be
highlighted.

A GatewaySurrogateHost module has been implemented by modifying and
extending the Surrogate Host provided with the reference implementation of Jini
Surrogate Architecture specification. IBM’s J9 VM for Java is used to implement
the surrogate for the handheld device and contains classes which implement the
functionality of the task that the Device wishes to execute. Moreover, it contains
the ’device-to-surrogate’ interconnect implementation which, in the case of this
scenario, is based on IP Interconnect Specification.

4.1 Measurements and Result Optimization

Measurements were taken to analyze the performance of the Device during the
course of execution. The client application on the PDA consumes fewer than 6
MB of memory at maximum. This also includes the foot print of the J9 JVM and
Java AWT classes. Delay in transmission of results from the surrogate and their
display in the form of graphs on the Device were found to be negligible (quite
less than 1 second) owing to 100 % signal strength of the wireless connection
and CPU availability to client application on the PDA. Table 3 sums up the
measurements.

Table.3. Result parameter count and size comparison at
GatewaySurrogateHost and Device

Query Type Number of val- Intermediate Number of Result size
ues received at result size at values sent sent to Device
Host Host (bytes) to Device (bytes)

CPU Usage 22 132+ 3 2442

CPU Avg. Load 3 24+ 3 2442

HDD Utilization 12 48+ 3 1642

RAM Utilization 17 684 3 16+2

Network I/0 2 16 2 16+2

Total 56 288+ 14 106

The size of result object depends on the type of values stored in the fields.
The 14 statistical values are received in 5 'Result’ objects and amount to, on
average, 62 bytes of results per 5 seconds with additional 44 bytes after every
minute. An interesting comparison is made by considering the number of result
parameters and their size as retrieved by the surrogate (executing at the Gate-
waySurrogateHost) with the corresponding values at the Device. A significant
amount of information can be condensed by applying intermediate calculations
and filtration of values at the surrogate module.

R
N

—— SBNEA JO 1B UINY —
— (safq) o215 wolqp —»

QueryID oy i

Ouery 1D CRU T
— Usage LR, Hard Digk

Usage Hard S

ToA g MEMOY g
Fig. 2. Left: Comparison between number of values at the Host and values sent to
the Device; Right: Comparison between size of intermediate results at the Host and
size of results at Device.

It can be observed that the number of parameters is reduced by 75% (4
times reduction) when transferring results to the Device. Similarly, more than
64% of the data has been filtered out in intermediate calculations and trimming
at the surrogate. This performance markup is in addition to the communication
reduction achieved by careful selection of host machine and resources access
mechanisms during surrogate lifetime, as explained earlier. The burden on PDA
has really been reduced to a few hundred bytes of data and graph formation.

5 Conclusion

A solution based on Jini Surrogate Architecture, to access Grid services, is
demonstrated in this paper. In the proposed approach, a resource constraint
device wishing to access a resource-demanding service is allowed to delegate this
task to a relatively powerful machine (desktop, server). Specifically, CPU inten-
sive, network oriented tasks can efficiently be delegated to such systems when
network connectivity is available. In case of intermittent connectivity, applica-
tions and services requiring on demand or periodic network access can benefit
from this approach.

Optimization of the overhead caused by an additional layer between the
source service and the destination device, location based dynamic scalability,

and multi-protocol discovery services, are the main focus of the research. Target
Grid services have been identified and work is under progress to deploy and use
it in a real world scenario. Some issues that have been ignored in the test bed
implementation will be integrated into the architecture. These include HTTP
discovery, client authentication, and surrogate verification and migration sup-
port.

References

1. Foster, I.: What is the Grid? A Three Point Checklist. In: GRIDToday (2002)

2. Satyanarayanan, M.: Fundamental Challenges in Mobile Computing. In: Proceed-
ings of the 15th Annual ACM Symposium on Principles of Distributed Computing,
Philadelphia (1996)

3. Sun Microsystems, Inc.: Jini™ Architecture specification.
http://www.sun.com/jini/specs/

4. Sun Microsystems, Inc.: Jini™™Technology Surrogate Architecture Specification.
http://surrogate.jini.org/sa.pdf (2003)

5. Sun Microsystems, Inc.: Jini™Technology IP Interconnect Specification.
http://ipsurrogate.jini.org (2001)

6. S. Vazhkudai, S., Tuecke, S., Foster, I.,:Replica Selectionin the Globus Data Grid.
Proceedings of the first IEEE/ACM International Conference on Cluster Computing
and the Grid (CCGRID 2001), IEEE Computer Society Press,(2001) 106-113

7. Lee, B., Weissman, J.B.: Dynamic Replica Management in the Service Grid. In: High
Performance Distributed Computing 2001 (HPDC-10701), San Francisco, California
(2001) p. 0433

8. Lee, S., Gerla, M.: Dynamic Load-Aware Routing in Ad hoc Networks. Proceed-
ings of The Third IEEE Symposium on Application-Specific Systems and Software
Engineering Technology (ASSET 2000), Richardson Texas (2000)

9. Godfrey, B., et al.: Load Balancing in Dynamic Structured P2P Systems. In: IEEE
INFOCOM 2004, Addis Ababa, Ethiopia (2004)

10. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.: Un-
raveling the Web Services Web - An Introduction to SOAP,WSDL, and UDDI. In:
IEEE Internet Computing, vol. 6, no. 2,(2002) 86-93

11. Box D., et al. Simple Object Access Protocol 1.1. Technical report,
W3C.,http://www.w3.org/TR/2000/NOTESOAP-20000508/ (2000)

12. Chiu, K., Govindaraju, M., Bramley, R.: Investigating the Limits of SOAP Per-
formance for Scientific Computing. In: The Eleventh IEEE International Symposium
on High Performance Distributed Computing (HPDC-11), Edinburgh International
Conference Center, Edinburgh, Scotland (2002)

13. Shan, H., Oliker,L., Biswas, R.: Job Superscheduler Architecture and Perfor-
mance in Computational Grid Environments. In: Super Computing Conference 2003
(SC2003), Phoenix, Arizona (2003) 15-21

14. Wolski, R.: Dynamically Forecasting Network Performance Using the Network
Weather Service. In: Journal of Cluster Computing, (1998)

15. Shafi, M.A., et al.: DIAMOnDS - Distributed Agents for Mobile and Dynamic
Services. In: Computing in High Energy and Nuclear Physics (CHEP2003), La Jolla,
California (2003)

16. Stallings W.: SNMP, SNMPv2, SNMPv3, and RMON1 and RMON2. 3rd Edition
Addison-Wesley, California (1999) 71-82

