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ABSTRACT 
 
Although Mel-frequency Cepstral Coefficients (MFCC) 
has been proven to perform very well under most 
conditions, some limited efforts have been made in 
optimizing the shape of the filters in the filter-bank. In 
addition, MFCC does not approximate the critical 
bandwidth of the human auditory system. This paper 
presents a new feature extraction approach that (1) 
decouples filter bandwidth from other filter bank 
parameters inspired by the critical bands of the human 
auditory system and (2) designs the shape of the filters in 
the filter-bank. In this new approach, determining filter 
bandwidth is based on the approximation of critical band 
equivalent rectangular and the filter-bank coefficients are 
data-driven obtained by applying the principal component 
analysis (PCA) on the FFT spectrum of the training data. 
Though the experiments, we proved the noise robustness 
of this approach and the better performance of recognition 
systems. 1 

1. INTRODUCTION 
 
Feature extraction is a very important key element in 
speech recognition since it is the first step of the whole 
recognition process and it produces the parameters on 
which the recognition algorithm is based. If the feature 
parameters used are not well extracted, the recognition 
performance is naturally limited. MFCC are the most 
widely used feature parameters currently, while linear 
predictive cepstral coefficients (LPCC) were also used in 
some systems. Usually MFCC offers a performance better 
than what LPCC does, especially in noisy environment, 
but it is generally believed that it is highly desired to have 
feature parameters better than MFCC.  
 

As far as we know, the bandwidth of each filter (the 
principle factor determining spectral smoothing) is 
arbitrarily set by fixing the base of each triangular filter by 
the center frequencies of the neighboring filters.  
 

1 This research was partially supported by ITRC project of Sunmoon 
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Furthermore, popular variations of the MFCC filter bank, 
in an effort to accommodate data of sampling frequencies 
greater than 8 KHz, have increased the number of filters 
present and changed the function for frequency warping 
without regard to changes in filter bandwidth that these 
modifications incur. For example, Malcolm Slaney's 
Matlab version of MFCC [3] doubles the number of filters, 
effectively halving the bandwidth of D&M's filters, and 
Steve Young's I-IMM Toolkit (HTK) [4], a principle tool 
in C/C++ for large vocabulary ASR for labs throughout 
the world, features an MFCC function that allows the user 
to select frequency range and number of filters for the 
filter bank (but not bandwidth!). These methods, as well 
as Davis and Mermelstein’s (D&M) [1] original version, 
are limited by the fact that filter bandwidth is not an 
independent design parameter; instead, bandwidth is 
determined by the filter spacing. Bandwidth should at 
least be related to filter center frequency, as inspired by 
the critical bands of the human auditory system. In this 
paper we used the scheme for determining filter 
bandwidth, based on the approximation of critical band 
equivalent rectangular bandwidth (ERB) from Moore and 
Glasberg [5]. This scheme decouples bandwidth from 
other filter bank design parameters (frequency range, 
number of filters), allowing for independent design and 
optimization of bandwidth [8]. 
 

In the original MFCC feature extraction process there 
are in fact two steps also related to dimension reduction. 
One is the Mel-scaled filter-bank processing. In each 
frequency band, the frequency components are weighted 
according to the filter frequency response and then 
accumulated to a value representing the total energy of 
that band. The other step of dimension reduction is 
performed in the transformation from the log-spectral 
domain lo the cepstral domain, where the size of the 
resulted cepstral features is often less than that in the log-
spectral domain. Both of these two steps may probably 
result in some information lass from the original signal, 
although it is widely accepted that such steps are helpful 
in extracting the useful components in speech signals for 
recognition. Since the Mel-scaled filter-bank plays a very 
important role in feature extraction process, it is re-
considered here in this paper. Conventionally, triangular 
filters are used in the filter-bank in the MFCC derivation 



process [16], which seems to be a reasonably good but 
relatively rough solution. However, it seems that not too 
many efforts have been reported in trying to optimize the 
shape of each filter in the filter-bank. In fact, the shape of 
the above filter also has to do with the signal-to-noise 
ratio of the filter output. For example, if the noise added 
to the clean signal is white, then different frequency 
components have different signal-to-noise ratio (SNR) 
since the noise components are roughly the same for all 
frequencies while the speech components are not. The 
filter shape determines the weights on different signal 
components in the same frequency band, and thus 
determines the output SNR. In this paper, we proposed 
that the shape alone of each filter in the Mel-scale filter-
bank in MFCC feature extraction can be derived darn-
driven by applying the criterion of principal component 
analysis (PCA).  
 

The rest of the paper is organized as follows. In section 
2, we describe the techniques proposed to design the 
bandwidth and the shape of filter-bank. The 
implementation and simulation results are provided in 
section 3. Finally, Section 4 provides a summary of 
conclusions. 
 

2. DESIGNING FILTER BANK 
 
As we mentioned, this part presents the proposed filter 
bank approach that (1) decouples filter bandwidth from 
other filter bank parameters inspired by the critical bands 
of the human auditory system and  (2) designs the shape 
of the filters in the filter-bank by applying PCA on the 
FFT spectrum of the training data.  
 
2.1. Human auditory filter bank 
 
In this part we will show how to design a filter with 
human factor [8]. The relationship between mel frequency 

^
f and linear frequency f   is shown by Fant’s expression 

[6] as follows.  
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Let 

il
f , 

icf  and
ihf  be the low, center, and high 

frequencies for the thi  filter in linear frequency, and let 

minf  and maxf  define the frequency range for the entire 
filter bank. In mel frequency, center frequencies are 
equally-spaced. That is,  
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The steps for filter bank design are summarized as 
follows (see [8]): 

1. Determine the first and last filter’s center 
frequency. The two equations needed to solve for 

icf  come from equation (2) as well as from the 
expression of ERB for a triangular function and 
Moore and Glasberg’s ERB expression : 
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where 
icf  in Hz and a = 6.23x10-6, b = 

93.39x10-3, and c = 28.52 [5]. 
 

2. Find the remaining center frequencies: 
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3. Find lower and upper frequencies: 
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4. Originally, we construct filter shape in frequency 

domain by connecting straight lines between  
il

f   

and 
icf  and between 

icf  and 
ihf . The triangle 

has zero height at each end and unity height at 

icf . However, in our design we use the shape by 
applying PCA. Details will be shown soon in 
below part. 

 
2.2. PCA-based shape design of filter bank 
 
The central idea of principal component analysis (PCA) is 
to reduce the dimensionality of a data set that consists of a 
large number of interrelated variables, while retaining as 
much as possible of the variation present in the data set 
[10]. To state PCA briefly, if x is an Nx1 random vector, 
the objective is then to find a set of Nx1 orthonormal 
vectors { |1 , }iw i k k N≤ ≤ ≤  such that the inner 

product of each wi and x, T
i iy w x= has the maximum 

variance, where yi is a scalar value. The above set of 
vectors { }iw   is in fact the eigenvectors of the covariance 
matrix for x corresponding to the largest k eigenvalues. 



The above idea of PCA can be applied in the filter shape 
optimization problem considered here. Each filter in the 
filter-bank can be viewed as a process of dimensionality 
reduction, where the signal components within that 
frequency band are weighed and then combined into a 
single value, whose variation is to be maximized. The 
detailed procedure is stated as follows. 
 

Let { ( ), 1, 2,..., }kx n n M=  be the random variables 
representing the M signal components belonging to the kth 
frequency band to be handled by the kth filter in the filter-
bank, where M in the total number of components in that 
band, and let xk be the vector representation for these 
random components. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1. The process of finding the filter shape by PCA. 
 
For each training signal of the training database, its 

spectral components corresponding to the kth filter of the 
filter-bank can be extracted, represented as a vector and 
then this vector can be viewed as a sample random vector 

( )kx i . By collecting these sample vectors, we can get a 
training set of vectors for the kth filter. The average vector 
of the training set is defined 

by
1
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Let [ (1) (2)... ( )]k k k kA d d d M=  be the 
representation of that training set. Next, we find the 
vectors kµ and scalars kλ which are the eigenvectors and 
eigenvalues, respectively, of the covariance matrix  
 

TC AA=  (6) 
 

The coefficients of the kth filter are then simply the 
components of eigenvector kµ corresponding to the 

largest eigenvalue max{ , 1,2,..., }k i i Mλ λ= = . This 
process is shown in fig. 1. And the shape of 30 filters in 
the filter-bank could be seen in fig. 2a and 2b. 
 

3. EXPERIMENTAL RESULTS 
 
The major speech database used in the experiments was 
the Alphadigit Corpus database of Corpora group at 
CSLU. The CSLU Alphadigit Corpus (AD) is a collection 
of about 78,000 examples from 3,031 talkers saying 
strings of letters and digits over the telephone. The data 
was recorded directly off of a digital T1 phone line 
without digital-to-analog or analog-to-digital conversion 
at the recording end. An 8kHz sampling rate was used. 
The first set of experiments was performed on AD, in 
which a zero-mean while Gaussian noise was added to the 
test utterances at each specified signal to noise ratio. Next, 
we detected and extracted isolated words from AD 
database for isolated word recognition experiments. A 
32ms Hamming window shifted with 10ms steps and a 
pre-emphasis factor of 0.97 were used. Then cepstral 
coefficients were generated through a filter-bank of 30 
filter and IDCT, and the first 12 coefficients plus the log 
energy were chosen as the feature parameter. The 
conventionally used triangular filters in the filter-bank 
were applied for the baseline experiments for the further 
comparison. On the other hand, the modified filter-bank as 
shown in fig. 2a and 2b is generated using the training 
isolated words of AD database by proposed technique as 
described previously.  
 

The dimension of the baseline MFCC feature vector is 
39, which include 13 coefficients as mentioned above, its 
13 derivatives and 13 accelerations. We used 6-state left-
to-right word HMM models  
 

Table 1 lists the recognition results for the first set of 
experiments on AD database under various noisy 
conditions. Each column is for a different SNR condition, 
and each row is the result for a processing approach. 
Three approaches will be tested under some noisy 
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environments in our experiments. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2a. The shape of the 18 first filter banks in 30 band 
filter. 
 

The first row (1) is the original MFCC approach with 
mel-scaled filter-bank. The second one (2) shows the 
results when we apply human auditory (HA) filter-bank 
without PCA. And final result (3) is our approach with 
HA/PCA filter-bank. All these approaches are tested 
under various noisy conditions. 

 
Until now, from the results of table 1, we can see that 

our approach gives a better performance not only in clean 
condition but also in various noisy conditions. However, 
we just test the proposed approach in our own 
experiments. It is expected that this approach will be 
tested in a variety of databases and that the PCA approach 
could be improved  to offer better results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2b. The shape of the 12 final filter banks in 30 band 
filter. 
 

SNR Clean 30dB 20dB 10dB 
MFCC (1) 80.9 71.2 53.6 30.2 

HA filter (2) 82.5 72.6 56.1 32 
HA/PCA filter (3) 83.9 76.1 60.1 35.6 

 
Table 1. Recognition results under various noisy 
conditions. 
 

4. CONCLUSION 
 
In this paper, a new approach to design the filter-bank has 
been proposed and tested. The main idea of this approach  
consists of (1) decouples filter bandwidth from other filter 
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bank parameters inspired by the critical bands of the 
human auditory system and (2) designs the shape of the 
filters in the filter-bank. In this new approach, determining 
filter bandwidth is based on the approximation of critical 
band equivalent rectangular and the filter-bank 
coefficients are data-driven obtained by applying the 
principal component analysis (PCA) on the FFT spectrum 
of the training data. Though the experiments, we proved 
the noise robustness of this approach and the better 
performance of recognition systems. We hope that this 
approach will be tested on some other databases to prove 
its generality in recognition systems. 
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