
Context-aware Search in Dynamic Repositories of Digital Documents

A. M. Khattak
a
, N. Ahmad

b
, J. Mustafa

b
, Z. Pervez

c
, K. Latif

b
 S. Y. Lee

a

a
Department of Computer Engineering, Kyung Hee University, Korea

{asad.masood, sylee}@oslab.khu.ac.kr

b
 School of Electrical Engineering and Computer Science, NUST, Pakistan

{nabeel.ahmad, jibran.mustafa, khalid.latif}@seecs.nust.edu.pk

c
 School of Computing, University of the West of Scotland, United Kingdom

zeeshan.pervez@uws.ac.uk

Abstract - Autonomous and Distributed repositories containing

digital documents are maintained and managed independently

in accordance to organization’s business needs. Documents

containing same information in different repositories maybe

represented differently, making it hard to retrieve desired

information. The information explosion necessitates efficient

techniques to unearth the lump of information from hay stack

of online digital documents with same and heterogeneous

structures. Keyword based information retrieval techniques

help in improving the recall of user query result, but has a low

precision. To improve precision, we adopt semantic

information retrieval technique from digital documents using

ontology and maintain dynamic and evolving domain ontology

to accommodate the retrieved information. We followed

searching technique using thematic similarity approach to

enhance the precision of search results. We propose a

comprehensive architecture for semantic based information

retrieval and search. Plain text is read semantically and the

extracted metadata is stored for later use to answer user

queries. Triple-centric technique is used for maintaining

source metadata (in case of system crash) and probing user

queries for capturing the context of the keywords. Semantic

based information retrieval and annotation technique

precision and recall results are very promising. Semantic

search using thematic similarity approach proves to have

better precision and recall than previous keyword based

searching techniques.

Keywords: Information Storage, Information Retrieval,

Knowledge Management Applications, Text Annotation,

Ontology Evolution

I. INTRODUCTION

Online digital repositories are increasing in size and they

amounted to terabytes of size. The pace of increase in the

size is more than the Moore’s Law. Searching a digital

document and their contents in such huge repositories for

given user query is a tedious job, and also consumes lots of

time and resources. Traditional keyword-based search

engines perform keyword searching in documents by

matching keywords specified in user queries. These systems

also maintain a word index to accomplish searching [1, 2]

(e.g., Google).

The existing systems do not understand the meanings of

the keywords (i.e., semantics). Semantic heterogeneity exists

among different documents containing same information

with different representation, which makes it more difficult

to understand semantics of the keywords [3, 4, 5, and 6].

Searching such repositories for documents result in high

recall but the precision is very low. To understand the

meaning of terms in a digital document, first we need to

extract it semantically. After semantic extraction and

annotation generation, the concept representation is very

important so that matching algorithm can work on it

properly. This approach utilizes lexicon and domain

ontology in extracting concepts from digital documents and

identifies the defined relationships in the domain ontology.

Ontology is a formal, explicit specification of a shared

conceptualization [7].

Ontology change management is a complicated and

multifaceted task incorporating, Ontology Integration,

Merging, Versioning, and Evolution that deal with different

aspects of ontology change management problem [8].

Domain ontology containing extracted metadata

changes/evolves as new information is extracted from the

documents. Consequently, an ontology change management

solution has to answer a number of questions [9]. First

question is posed to the systems’ overall working, “how to

maintain all the changes in a consistent and coherent

manner?” Other questions revolve around the applications of

all these logged changes for the purpose of ontology

recovery and understanding for the semantics of change.

Search in semantic-based information retrieval

techniques is performed by interpreting the meanings of

keywords (i.e., semantics) provided by domain ontology.

Ontology together with instances of the class constitutes a

knowledgebase. This information is stored in Jena based

triple store with embedded semantics. Now the semantics of

keywords are identified through the relationships between

keywords by performing semantic similarity on them [3, 4,

10, 11] and the identified semantics contribute to increase

the precision of search results. The proposed framework is

scalable in a sense, when new documents are found;

information contained in them is extracted and stored in

knowledgebase which may require the evolution of

knowledgebase. The detailed experimental results show that

each module of proposed framework outperforms the

discussed systems.

This paper is arranged as follows: Section 2 describes the

existing research work in the field of semantic searching. In

Section 3 we present our proposed architecture in detail.

Experimental results are provided in Section 4. Finally, we

conclude our findings in Section 5 and talk about the future

directions.

II. RELATED WORK

Various semantic-based techniques have been used to

improve precision and recall of search engines. Ontology

based system proposed in [10] uses traditional vector space

model (VSM), using the term frequency (tf) and inverse

document frequency (idf), to carry semantic matching

between documents. The system is only restricted to

inheritance relationship while inferring the domain

ontology. The framework proposed in [3] improves

precision by extending the semantic matching to incorporate

other relationships by defining weighting scheme to assign

different weights to search terms while encountering

different relationships between them. The SSR Model in

[12] finds similar search terms and assigns them initial

weights using tf.idf. Then higher weights are assigned to the

search terms located in the same semantic neighborhood.

However, we argue that the probability of encountering a

keyword in a document is not an adequate measure to

determine that the search terms is a suitable representative

for any given context. Context-dependent approaches [13]

extended VSM using tf.idf method to obtain weighted

taxonomy to demonstrate the context. They argue that their

weighted taxonomy assigns high similarity score to the

search terms in general context and low similarity score for a

specific context.

In contrast to VSM, the feature based method computes

similarity between concepts by exploring their properties or

features. The method employed in [4] uses normalized form

of Tversky's model [14] to measure the similarity between

concepts, based on their features that include synonyms,

semantic neighborhood, attributes and parts. To determine

the concept to be a representative of given context requires

concentrating on its thematic behavior (i.e., the concept and

its relationship in the text).

Systems using semantic distance based approach also

exist, mostly used in graph matching such as [11, 15, and

16]. The idea is to define the distance between two concepts

with respect to their position in the concept or relationship

hierarchy (from their closest common parent). The basic

intuition in conceptual graph (CG) matching is to calculate

semantic matching by comparing arcs. The arc in CG

comparison enables to determine the concept to be a

representative of given context by concentrating on its

thematic behavior (i.e., the concept and its relationship in the

text). We inherent the same thematic behavior while

performing semantic matching between the search terms in

digital documents and domain ontology using RDF triples.

The domain ontology is populated with the triples extracted

from the digital documents that are parsed semantically.

III. SEARCHING DIGITAL DOCUMENTS

In this section we will discuss architecture for a search

engine that intelligently searches digital documents from

distributed document repositories. The detailed component

wise introduction is published in [17], while here we mainly

focus on components working and their results. Our

assumption is that the documents have already been crawled

from distributed repositories. Information contained in these

documents is extracted and stored in Jena based triple store

where it is searched intelligently. Figure 1 shows the overall

framework architecture of our system. The architecture

comprising of three main modules: (a) Knowledge Extractor,

(b) Ontology Change Management, and (c) Search Module.

A. Knowledge Extractor

Figure 1 (a) shows our knowledge extractor module. In

this module, semantically enriched context-aware metadata

of a document is generated. The metadata extraction steps

are as follows.

Standard Document Format: Since digital documents are

unstructured and in heterogeneous data formats. The first

step is to transform the unstructured and heterogeneous data

formats into one semi-structures format to be processed

further, such as, XML, which ultimately improves the

machine readability of the documents. After this the standard

format is processed component wise as explained below.

Component Identification: Every document comprises of

various components, for instance, research documents

comprises of: abstract, background, and conclusion.

Rhetoric Structure (RS) [18] ontology defines components

of scientific publications. Since each component has its

importance in document, based on this importance weights

are assigned to components.

Term Extraction: In this step, terms are extracted from each

component of a document and are then categorized as: 1)

Single Word Terms, 2) Compound Word Terms. The single

word terms are easily extracted, while compound word terms

are extracted using the stop-word based mechanism that

consider the words as compound word until a stop-word is

reached. TF/IDF [19] of the terms is computed with respect

to documents and its components.

Lexical Analyses: Job of this module is to:

• Parts of Speech Tagging (POS): POS tagging (a)

assigns POS to each term based on thesaurus, and (b)

discards unwanted POS except nouns and verbs.

• Stemming: is a process for reducing inflected (or

sometimes derived) words to their stem, base or root

form – generally a written word form. In addition, we

maintain a list of suffixes combinations that need

special treatment as if they are trimmed off, the

context of the concept change. Some of the succeeding

element are “ing”, ‘s’, “ers”. In other word, it helps in

identifying concepts in the documents.

• Concept Clustering: A document may contain

multiple instances of a concept. After stemming

process multiple instances of a concept are clustered

on the bases of document. The clustering generate a

three dimensional graph with its axis as documents,

concepts and their respective frequency.

Weight of each concept is calculated with respect to the

component in the document and is calculated as:

 --------- (1)

Where WCi is total weigh of concept, tfidf is term frequency

/ inverse document frequency, n is total no of concepts, Cp is

weight of the component and N is size of the corpus.

Figure 1, System architecture of intelligent search in digital documents [17].

Hierarchy Identification: After concepts clustering,

synonyms for each concept are identified. OntoWordNet is

used for this purpose, using this; the broader and narrow

concepts are also identified to form a hierarchy.

Knowledge Representation: The identification of narrow and

broader concepts helps in specifying the super-class and

sub-class relationship. When the relationships are identified,

a semantic structure is generated and expressed in form of

triple.

Knowledge Verification: After knowledge representation in

the form of triples, then the consistency and quality of the

semantic knowledge has to be verified. The SemRef and

SemEval [18] are used to ensure the quality of the semantic

metadata.

We utilize the syntactic and semantic measures to

increase the quality of the metadata. The advantage over

tradition metadata is that we use the Rhetoric Structure for

correlating the concept – concept relationship with the

document component which improves the preciseness and

accuracy.

B. Change Management

Ontology is formal description of shared

conceptualization of a domain of discourse. They evolve

with the passage of time, when the perspective under which

the domain is viewed has changed [20]. The evolution

process deals with the growth of the ontology i. e.,

modifying or upgrading ontology when there is certain need

for change or there comes a change in the domain

knowledge.

Ontology change management module as given in Figure

1 (b), have two basic operations:

• Ontology Enrichment: When the knowledge extractor

produces totally new changes (concepts and slots),

which are not present in domain ontology

(knowledgebase), and then these are added to the

domain ontology. So we enrich our ontology to

accommodate the new changes and also populate our

ontology for its instances.

• Ontology Population: When we get new concept(s) i.e.,

simple or aggregated, which is already present in the

ontology. Then only instance of this concept(s) is

introduced and the knowledgebase is populated.

After receiving the extracted metadata from the

knowledge base, this module enriches and populates the

knowledgebase. Input for this process is domain ontology,

and the emerging concepts (local ontology of digital

documents) received from Knowledge Extraction module.

Working of this module is:

Change Detection and Description: The first step in the

process is to detect new changes. Schema and individual

level differences are detected effectively, as reported in [21].

In case, the concept in focus is totally new, then H-Match

algorithm [22] is used. Its Semantic Affinity measure

provides the contextual matching facility through set of four

models: surface, shallow, deep, and intensive. It takes the

new concepts for addition and domain ontology as input and

returns the best matching concept in the ontology. The

taxonomic position identification for the concept is given in

[23].

After this, every identified change is represented in a

proper and consistent format, where these changes may be

atomic or composite. Changes are first assembled in a

sequence, and then this sequence is followed for

implementing the changes on domain ontology. Process of

atomic changes is followed that consider all composite

changes as an ordered sequence of atomic changes as well.

Finally, the changes are represented using Change History

Ontology (CHO) [9]. We use the same representation for

logging the ontology changes in the Change History Log

(CHL).

If, there is no new changes received from the Knowledge

Extractor, then this module forward the extracted

information to change propagation module, which populate

the instances in knowledgebase.

Inconsistencies Detection: Here ontology changes are

resolved systematically to ensure that consistency of the

ontology is not lost. Ontology may become inconsistent

because of the new changes. Types of inconsistencies can be,

1) syntactic: when undefined entity at ontology or instance

level is used, 2) semantic: when meaning of entity is changed

due to performed changes. To keep ontology consistent,

deduced changes are introduced. A complete request of,

required changes and the deduced changes are made. KAON

API [24] to identify alternative deduced changes. These

changes are presented to the ontology engineer and then

ontology engineer selects changes from the available

alternatives.

Change Implementation & Verification: All the induced and

deduced changes, which make a complete change request,

are applied to the ontology. This module is designed to

manage three characteristics. 1) When a change is applied

then it should complete in isolation, must be atomic, durable,

and consistent. 2) After every change implementation,

change verification is made to verify that the required

changes have been committed to the ontology. 3) After every

change implementation the change must be logged in the

change log, to keep track of all the implemented changes in

an ordered manner. This helps in undoing changes by

reversing the logged changes on ontology.

Change Propagation: It has two basic operations. 1) If there

are no new changes in the local ontology, verified by Change

Detection and Description module, then the instances of

local ontology are simply populated in the knowledgebase.

2) If new changes were requested and also implemented

through the above steps, then these changes are propagated

to the domain ontology and it evolves to a new state. The

instances of local ontology are populated in the

knowledgebase according to the evolved domain ontology.

Figure 2. Snapshot representing core classes of Change History Ontology

(CHO)

Change History Log (CHL): It is a repository that keeps

track of all the changes made to the domain ontology. It

stores every change after it is being implemented in change

implementation phase. CHL is also required for reversibility

purpose when an ontology engineer want to undo or redo

some of the changes then this log is accessed and changes are

simply reverted. The log uses Jena based triple store and the

change description is provided by Change History Ontology

(CHO) shown in Figure 2, to preserve the changes for later

use. The baseline for CHO is the Log Ontology presented by

Yaozhong David Liang [25]. We have modeled quite a few

extensions to Log Ontology and come up with CHO as

shown in Figure 2. Some of the extensions include: 1)

Capturing such provenance information as the change

author, reason, timestamp. 2) We introduced a class

OntologyChange. It has further subclasses including

AtomicChange and ChangeSet. The AtomicChange tackles

with all types of changes that can be applied to ontology at

its class and property, and Instance level, which are addition,

deletion, updating, and renaming. 3) ChangeSet holds

information about the changes that whether it is an instant or

composite and stretched change over a defined time interval.

ChangeSet also helps in properly maintaining the sequences

of the changes applied. With ChangeSet, all the changes of

some defined time interval are organized and managed

together, which help us to undo/redo the changes.

C. Document Searching

In this module (shown in Figure 1 (c)), we employ RDF

triples instead of keywords searching in order to concentrate

on the context of the search term. A user submits search

query in the form of RDF triple(s), which is answered using

knowledgebase. The user submitted query is parsed into

Spar-QL query. The search query is analyzed by the

semantic matcher, to generate one or more standard Spar-QL

queries. The searching is performed using the extended

queries to identify the relevant documents for the user query.

The relevance score of documents is computed by Ranker to

sort the identified documents. This module has two main

components shown in Figure 1 (c): Semantic Matcher and

Ranker.

Semantic Matcher: In Search Module, the semantic matcher

is the main component which is responsible for query

answering/searching. In first step, the RDF query is

augmented with synonym [3, 12, 16], semantic

neighborhood [4] and other relationships such as hyponym

[4, 12, 26] (i.e., Is-A relationship) and Meronym (i.e.,

Part-of) [4, 12]. The equivalent Spar-QL queries are

generated for augmented RDF triples to perform searching.

We have used different semantic properties to relate

different concepts.

• synOf: The synOf property states that different

individuals are the same (i.e., equivalence relationship).

It is used to deal with synonyms, acronyms, and lexical

variant heterogeneity issues. For example <author>

synOf <writer>.

• neighborOf: The neighborOf property is used to explore

the semantic neighborhood of concept's relationships.

The semantic neighborhood (n) of a concept c is the set of

the set of Cs whose distance d to the concept c is less than

or equal to a non-negative integer r, called radius of the

semantic neighborhood. The semantic neighborhood

with radius r =1, represents subclass, super class and

part-whole relationships.

)2(),(}{),(rCcdthatsuchCrcn ss ≤∀=

In second step, similarity between query and source RDF

triple is computed using distance based approach [11, 15,

and 16].

Semantic Similarity: Interpreting the keywords with respect

to the context requires obtaining similarity between concepts

and relationships (i.e., thematic similarity). We focus on

thematic similarity by matching RDF triples to concentrate

on both aspects together.

• Concepts Similarity: Concepts similarity is measured by

calculating the distance between them [11, 15, 16]. The

distance is calculated between different concepts from

concepts position in the hierarchy. The position of a

concept in a hierarchy defined in [16] is as follows.

)3(
2/1

)(
)(nlk

nmilestone =

Where ‘k’ is a predefined factor larger than 'one' that

indicates the rate at which the value decreases along the

hierarchy, and l(n) is the depth of the node ‘n’ in

hierarchy. For the root of a hierarchy, l(root) = 0. For any

two concepts in the hierarchy, have closest common

parent (ccp). The distance between two concepts c1, c2

and their ccp will be determined by their closest common

parent as follows:

)4(),(),(),(2121 ccpcdccpcdccd ccc +=

)5()()(),(11 cmilestoneccpmilestoneccpcd c −=

Thus, the similarity calculation between two concepts, c1

and c2, as follows:

)6(),(1),(2121 ccdccsim cc −=

There are some exceptions that if the concept c1 and

concept c2 are synonym or acronym of each other, the

distance will be set to zero, i.e., the similarity between

these two concepts will be 'one'. We consider synonym

and acronym relation between concepts are at the same

level.

• Relationship Similarity: Likewise, the similarity

between two relationships is defined as follows:

)7(),(1),(2121 rrrdrrrsim −=

The distance between two relations is also calculated by

their respective positions in the relation hierarchy. The

only difference is that the relation hierarchy is

constructed manually by us. There are some exceptions

that if relations r1 and r2 are synonym or acronym of each

other than the distance will be set to zero, consequently

the similarity between these two relations will be 'one'.

• RDF Triple Similarity: The user query and data source

RDF triples are matched to find their similarity. The final

triple similarity matching formula by combining (6) (for

concepts similarity) and (7) (for relations similarity) is as

follows:

∏∏
= =

=
n

i

m

j j

obj

i

objobj

j

r

i

rr

j

sub

i

subsub

sqsim

sqsim

sqsim

sqsim
0 0

)8(

),(

),(

),(

),(

Where qsub , qobj and Ssub , Sobj are matched concepts

while qr and Sr matched relation of query RDF triple q

and source RDF triple S respectively. Sim(q, s) is the

overall similarity between query (q) and source (S) RDF

triples. Here i and j represent i
th
 and j

th
 subject or object

or relation of query and source RDF triples respectively.

Semantic Reasoning: To infer knowledge from existing

metadata (knowledgebase), different rules have been

defined in the respective rule bases. Some of the rules are:

inverseOf and transitiveOf.

• InverseOf Rule: The inverseOf rule defines the relation

taken ‘backwards’. If two concepts c1 is related to c2

with relation R then c2 will be related to c1 with R
-1.

Figure 3, shows the N3 representation of inverseOf rule

in semantic web rule language (SWRL).

:Def-inverseOf @swrl("(?x neighborOf ?y) -> (?y neighborOf ?x)").

Figure 3. A snippet of' inverseOf rule

• TransitiveOf Rule: The transitiveOf rule defines if c1 is

related to c2 and c2 is related to c3 with relation R then

there exist relation R between c1 and c3. Figure 4 shows

the N3 representation of transitiveOf rule in SWRL.

:Def-transitiveOf @swrl("(?x neighborOf ?y) (?x synOf ?w) (?y synOf ?u) ->

(?w neighborOf ?u)").

Figure 4. A snippet of transitiveOf rule

Documents Ranking (R(d)): Identified relevant documents

through the Semantic Matcher are passed to the Ranker,

which sort them according to their relevance to the users

query. The ranking algorithm of the Ranker combines two

factors: 1) the RDF triple score is calculated and 2) its

relevance to a document indicated by Wi using equation (6).

The documents relevance R (d) can be calculated as:

)9(),()(
0

∑
=

×=
n

i

iii WsqsimdR

Where n be the total number of triples in a document. The

documents are ranked according to their relevance score and

returned to the user.

IV. IMPLEMENTATION AND RESULTS

To retrieve context-aware information from digital

documents in the repositories, we have implemented all the

three modules of our framework architecture and verified

their results. There is no such system available that claim all

the features our system provides so that we can compare our

proposed system with. But there are individual components

been developed by different researchers, so we compare our

system component wise. We also discuss the results of our

three modules with different data sets that we used to

validate their functionality.

A user defined data set has been prepared for the

evaluation of the Knowledge Extractor module because

standard data set is not available for system testing and

evaluation in the specified domain. The statistics of the data

set are shown in Table 1. The system evaluation has been

divided into three units: 1) section detection and segregation,

2) compound word extraction and, 3) semantic annotation

generation. Here we discuss the semantic annotation

generation results (end triples generated by Knowledge

Extractor module) against existing systems.

TABLE 1. DATA SET SPECIFICATIONS

No of documents 20

Average document size 5 – 7 pages

Average sections per document

(physical)

5-7

No of corpses 2 (10 document each)

In semantic annotation generation, Semantic Annotation

Platforms (SAP’s) generally follow the standard evaluation

criteria of annotation precision, annotation recall, and

annotation f-measure details given in [27]. Here, the

proposed system is compared with the existing systems such

as Onto–O–Mat: PANKOW [28], SemTag [29], AeroDML

[30], and KIM [31]. The results comparison of proposed

system with the above mentioned systems is shown in Figure

5, while their detail working comparison is given in Table 2.

From the graph, it is evident that AeroDAML system has

more precision than our system Semantic Annotations

Engine (SAE). But, our system outperforms AeroDAML in

annotation recall and annotation f-measure. The main reason

of AeroDAML having more annotations precision is using

bootstrap ontology for the extraction of concepts from the

digital documents. It associates concepts based on user

knowledge not on representation in document.

Figure 5. SAP Comparison

To validate whether the ontology change management

work appropriately for the overall mechanism, we have

tested it for ontology enrichment and population. To

evaluate the change capturing capability of our change

management module, we developed as prototype Protégé

plug-in, we compared it with another plug-in i.e.,

ChangesTab of Protégé. Both the plug-ins (i.e., ChangesTab

and Change Tracer) were enabled in Protégé and changes

were made to ontology (Documentation Ontology). 35

random changes were made to the Documentation ontology

covering all the four different categories (i.e. Change in

Hierarchy, Change in Class, Change in Property, and Other

Changes). Out of these 35 changes, ChangesTab of Protégé

was able to capture 26 changes while our plug-in i.e.,

Change Tracer captured 31 changes. The graph representing

these results is given in Figure 6; where y-axis represents the

number of changes captured and x-axis represents the

number of changes made. The experiment was repeated

several times and Change Tracer showed better results than

ChangesTab.

TABLE 2. COMPARISON OF EXISTING SYSTEMS AGAINST SAE

Platform Method
Machine

Learning

Manual

Rules

Bootstrap

Ontology

AeroDAML
[30]

Rule N N Wordnet

KIM [31] Rule N Y KIMO

Onto –o – Mat:
PANKOW [28]

Pattern
Discovery

N N User

SemTag [29] Rule N N Tag

SAE Rule Y Y No

Results for the recovery of crashed or changed ontology

is provided, where validation and verification of the outcome

of the recovery process is an essential and critical aspect.

There has to be a mechanism to prove the hypothesis that the

output ontology, after applying the recovery process on top

of the Change History Ontology (CHO) [9], is correct. In

order to quantitatively measure the performance of the

recovery algorithm, an evaluation measure has been used

and we have published it in [32]. The Ontology Metadata

Vocabulary (OMV) is used by the community for better

understanding of the ontologies for the purpose of properly

sharing and exchanging the information among

organizations. To achieve this goal, this standard is set and

agreed by the community for sharing and reusing of

ontologies. OMV has different versions available online

containing different set of concepts, properties, and

restrictions. We have tested our recovery algorithm on three

different versions of OMV
1
 (i.e., omv-0.6.owl, omv-0.7.owl,

and omv-0.91.owl).

Figure 6. Comparison of Change Tracer against ChangesTab of Protégé

1 http://ontoware.org/frs/?group_id=39

Table 3 shows details about the types and number of

changes among different versions. These changes are

captured and stored in CHL with the help of Change Tracer

[32]. Using these logged changes we applied the roll back

and forward procedure given in [32], which resulted in

recovered versions. The recovered versions were compared

with the original versions using Prompt Tab in Protégé and

also checked manually. After the comparisons, all the

recovered versions were found exact with the original

versions.

TABLE 3. NUMBER AND TYPES OF CHANGES AMONG DIFFERENT VERSIONS
OF OMV ONTOLOGY

Ontology Versions OMV.owl &

OMV-0.7.owl

OMV-0.7.owl &

OMV-0.91.owl

Total Changes 38 189

Change in Hierarchy 18 71

Change in Classes 6 34

Change in Properties 25 123

The prototype system for semantic search takes different

queries as shown in Figure 7. Query_1 is simple, so

precision of all the systems on this query is quite high,

whereas Query_2 is not simple so the precision of VSM is

quite low. The precision of intelligent search is better than

VSM but expanding the context-aware search in semantic

neighborhood shows improved results as compared to other

approaches with respect to precision and recall. The

proposed intelligent searching approach has better precision

than VSM and simple semantic-based searching. The

improvement in recall is also observed in our approach by

expanding concepts in semantic neighborhood.

Query_1: Show all IEEE conference paper by ‘levi’ ?

RDF Query Pattern:

(?p :writtenBy :Levi)

(?P :hasType :Conference)

(?p :hasPublicationOrganization :IEEE).

Query_2: Find papers about the use of ontologies in Data Integration in the year 2005?

RDF Query Pattern:

(?p :hasContent :ontologies)

(?p :isAbout :Data Integration)

(?p :hasPublicationYear :2005).

….

Figure 7. Different Query examples in RDF

Figure 8, shows the comparison graph between the

results of VSM, context-aware search and context-aware

search with semantic neighborhood (our system). The

experiment is carried out with a collection of manually

classified 633 documents, related to master’s research thesis,

each containing 50-100 RDF triples. The research

publication ontology, containing 719 concepts, is used in the

experiment as the domain knowledgebase. Table 4 shows the

comparison between the other principal approaches used by

the existing systems and our proposed approach. The

comparison shows that our approach significantly improves

the precision by introducing context awareness but recall

may vary (i.e., either low or high).

Figure 8. Precision-Recall illustration of VSM, Context Aware &

Context-Aware Semantic with semantic neighborhood Approach

TABLE 4. COMPARISON BETWEEN PRINCIPAL MEASURE AND OUR APPROACH

IR Systems Similarity

Method

IR Type Precision* Recall* Context

Awareness

DOSE [10] VSM Keyword-Base

d

Low High No

IR

Framework

[3]

VSM Semantic-

RDF Based

Average High No

SSRM [12] Hybrid Semantic-

Keyword

Based

Average Average No

Context-Depe

ndent [13]

VSM Semantic-

Keyword

Based

Average High Yes

Our ApproachHybrid Semantic-

RDF Based

High Average Yes

*Precision & Recall : High >0.65, Average>=0.35 and <=0.65, Low<0.35

V. CONCLUSION

In this research articles, we presented architecture for

context-aware search engine for digital repositories, based

on the semantic metadata retrieved from digital documents.

RDF triples are used instead of keywords matching

technique. The subject, property and object of RDF triple

enabled the search module to concentrate on the

combination of concepts and their relationship similarity at

the same time. We maintain knowledgebase to store

metadata using domain ontology. In semantic matcher, user

submitted query is expanded with synonym and semantic

neighborhood. It is then rewritten for generated search

terms. The proposed architecture resulted in improved

precision of search results.

Currently, we are focusing on metadata retrieval from

digital documents, knowledgebase maintenance, and

semantic search module for achieving good precision. In

future we are going to extend the architecture, so that it can

handle other data structures like graphs, tables, instead of

only text from research articles.

ACKNOWLEDGMENT

This research was supported by the MSIP (Ministry of

Science, ICT & Future Planning), Korea, under the ITRC

(Information Technology Research Center) support program

supervised by the NIPA (National IT Industry Promotion

Agency)" (NIPA-2013-(H0301-13-2001)).

REFERENCES

[1] X. Li, F. Bian, H. Zhang, C. Diot, R. Govindan, G.

Iannaccone. "MIND: A Distributed Multi-Dimensional

Indexing System for Network Monitoring". IEEE Infocom-06

Barcelona, April 2006.

[2] A. Ntoulas, G. Chao, J. Cho, ”The Infocious Web Search
Engine: Improving Web Searching Through Linguistic

Analysis”, International World Wide Web Conference

Committee (IW3C2) ACM, Chiba Japan, May 2005.

[3] W. D. Fang, L. Zhang, Y. X. Wang, S. B. Dong, “Towards a

Semantic Search Engine Based on Ontologies”, IEEE
Preceedings of the Fourth International Conference on

Machine Learning and Cybernetics Guangzhou China, pp.

1913- 1918, 18-21 August 2005.

[4] M. A. Rodriguez, M. J. Egenhofer, “Determining Semantic

Similarity among Entity Classes from Different Ontologies”,

Knowledge and Data Engineering, IEEE Transactions, vol.
15, Issue 2, pp. 442- 456, April 2003.

[5] C. Y. Lee, V. W. Soo, “Ontology based information retrieval

and extraction”, 3rd International Conference on Information

Technology: Research and Education IEEE, pp. 265-269,

27-30, June 2005.

[6] M. Uschold, M. Gruninger, “Ontologies and Semantics for
Seamless Connectivity”, SIGMOND, vol. 33, December

2004.

[7] T. Gruber, “A translation approach to portable ontology

specifications. Knowledge Acquisition”, pp. 199-220, 1993.

[8] S. Castano, A. Ferrara, G. Hess, “Discovery-Driven Ontology

Evolution”. The Semantic Web Applications and Perspectives
(SWAP), 3rd Italian Semantic Web Workshop, PISA, Italy,

18-20 December, 2006.

[9] A. M. Khattak, K. Latif, and S. Y. Lee, "Change Management

in Evolving Web Ontologies", Knowledge-based Systems,

ISSN: 0950-707051, Available online, June 6, 2012

[10] D. Bonino, F. Corno, L. Farinetti, A. Bosca, “Ontology Driven
Semantic Search”, WSEASTransaction on Information

Science and Application, Issue 6, vol. 1, pp. 1597-1605,

December 2004.

[11] S. Khan and F. Marvon, “Identifying Relevant Sources in

Query Reformulation”. In the proceedings of the 8th

International Conference on Information Integration and
Web-based Applications & Services (iiWAS2006),

Yogyakarta Indonesia, December 2006.

[12] G. Varelas, E. Voutsakis, P. Raftopoulou, “Semantic

Similarity Methods in WordNet and their Application to

Information Retrieval on the Web”, 7th ACM international

workshop on Web information and data management
November 5, 2005.

[13] E. Sayed, A. Hacid, H. Zighed, Djamel, "A New

Context-Aware Measure for Semantic Distance Using a

Taxonomy and a Text Corpus", IEEE International

Conference on Information Reuse and Integration, 2007

(IRI-07), pp. 279-284, 13-15, August 2007.
[14] A. Tversky, “Features of similarity”, Psychological Review,

Vol. 84(4): pp. 327-352, 1977.

[15] M. Montes-y-Gomez, A. Lopez, A. Gelbukh, “Information

Retrieval with Conceptual Graph Matching”, DEXA-2000:

11th International Conference and Workshop on Database and
Expert Systems Applications, Greenwich, England,

September, 2000.

[16] J. Zhong, H. Zhu, J. Li, Y. Yu, “Conceptual Graph Matching

for Semantic Search”, Proceedings of the 10th International

Conference on Conceptual Structures: Integration and

Interfaces table of contents, Springer-Verlag London, pp.
92-196, 2002.

[17] A. M. Khattak, J. Mustafa, N. Ahmed, K. Latif, S. Khan:

“Intelligent Search in Digital Documents”. IEEE/WIC/ACM

International Conference on Web Intelligence, pp-558-561,

December, 2008.

[18] T. Groza, S. Handschuh, K. Moller, S. Decker. “SALT:

Semantically Annotated LATEX for Scientific Publication”,

ESWC, 2007.

[19] M. Shepherd. “Extracting Meaningful Metadata”. DRTC

Workshop on Semantics, 2003.
[20] N. F. Noy and M. Klein, “Ontology evolution: Not the same as

schema evolution”, Knowledge and Information System, vol. 6,

no. 4, pp. 428–440, 2004.

[21] M. Tury, M. Bielikova. “An Approach to Detection Ontology

Changes”. First international workshop on adaptation and

evolution in web systems engineering (AEWSE), 2006.
[22] S. Castano, A. Ferrara, and S. Montanelli. “Matching

ontologies in open networked systems”. Techniques and

applications, Journal on Data Semantics (JoDS), vol. V, pp.

25-63, 2006.

[23] S. Castano, A. Ferrara, and S. Montanelli, “Evolving open and

independent ontologies,” Journal of Metadata, Semantics and
Ontologies (IJMSO), vol. 1, No.4 pp. 235 - 249, 2006.

[24] T. Gabel, Y. Sure, and J. Voelker. “KAON – ontology

management infrastructure”. D3.1.1.a, SEKT Project:

Semantically Enabled Knowledge Technologies, March 2004.

[25] Y. D. Liang, “Enabling Active Ontology Change Management
within Semantic Web-based Applications”. Mini PhD Thesis,

University of Southampton, 2006.

[26] J. Smith, and D. Smith, “Database Abstractions: Aggregation

and Generalization,” ACM Trans. Database Systems, vol. 2,

pp. 105-133, 1977.

[27] N.F. Noy. “Semantic Integration: A survey of Ontology-Based
Approaches”. SIGMOD record, Volume 33, pp 65-70,

December 2004.

[28] P. Cimiano, S. Handschuh, and S. Staab, “Towards the

Self-Annotating Web”, in Thirteenth International Conference

on World Wide Web, pp 462-471, 2004.

[29] S. Dill, N. Gibson, D. Gruhl, R. Guha, A. Jhingran, T.
Kanungo, S. Rajagopalan, A. Tomkins, J. A. Tomlin, and J. Y.

Zien, “SemTag and Seeker: Bootstrapping the semantic web

via automated semantic annotation” in Twelfth International

World Wide Web Conference, pp 178-186, Budapest, 2003.

[30] P. Kogut, and W. Holmes, “AeroDAML: Applying

Information Extraction to Generate DAML Annotations from
Web Pages”, in First International Conference on Knowledge

Capture, 2001.

[31] B. Popov, A. Kiryakov, A. Kirilov, D. Manov, D. Ognyanoff,
and M. Goranov, “KIM – Semantic Annotation Platform” in

2nd International Semantic Web Conference (ISWC2003), pp

834- 849, Florida, 2003.

[32] A. M. Khattak, K. Latif, M. Han, S. Y. Lee, Y. K. Lee, H. I.
Kim: “Change Tracer: Tracking Changes in Web Ontologies”,

International Conference on Tools with Artificial Intelligence

(ICTAI), pp-449-456, November, 2009.

