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Abstract - Autonomous and Distributed repositories containing 

digital documents are maintained and managed independently 

in accordance to organization’s business needs. Documents 

containing same information in different repositories maybe 

represented differently, making it hard to retrieve desired 

information. The information explosion necessitates efficient 

techniques to unearth the lump of information from hay stack 

of online digital documents with same and heterogeneous 

structures. Keyword based information retrieval techniques 

help in improving the recall of user query result, but has a low 

precision. To improve precision, we adopt semantic 

information retrieval technique from digital documents using 

ontology and maintain dynamic and evolving domain ontology 

to accommodate the retrieved information. We followed 

searching technique using thematic similarity approach to 

enhance the precision of search results. We propose a 

comprehensive architecture for semantic based information 

retrieval and search. Plain text is read semantically and the 

extracted metadata is stored for later use to answer user 

queries. Triple-centric technique is used for maintaining 

source metadata (in case of system crash) and probing user 

queries for capturing the context of the keywords. Semantic 

based information retrieval and annotation technique 

precision and recall results are very promising. Semantic 

search using thematic similarity approach proves to have 

better precision and recall than previous keyword based 

searching techniques. 
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I. INTRODUCTION 

Online digital repositories are increasing in size and they 

amounted to terabytes of size. The pace of increase in the 

size is more than the Moore’s Law. Searching a digital 

document and their contents in such huge repositories for 

given user query is a tedious job, and also consumes lots of 

time and resources. Traditional keyword-based search 

engines perform keyword searching in documents by 

matching keywords specified in user queries. These systems 

also maintain a word index to accomplish searching [1, 2] 

(e.g., Google). 

The existing systems do not understand the meanings of 

the keywords (i.e., semantics). Semantic heterogeneity exists 

among different documents containing same information 

with different representation, which makes it more difficult 

to understand semantics of the keywords [3, 4, 5, and 6]. 

Searching such repositories for documents result in high 

recall but the precision is very low. To understand the 

meaning of terms in a digital document, first we need to 

extract it semantically. After semantic extraction and 

annotation generation, the concept representation is very 

important so that matching algorithm can work on it 

properly. This approach utilizes lexicon and domain 

ontology in extracting concepts from digital documents and 

identifies the defined relationships in the domain ontology. 

Ontology is a formal, explicit specification of a shared 

conceptualization [7]. 

Ontology change management is a complicated and 

multifaceted task incorporating, Ontology Integration, 

Merging, Versioning, and Evolution that deal with different 

aspects of ontology change management problem [8]. 

Domain ontology containing extracted metadata 

changes/evolves as new information is extracted from the 

documents. Consequently, an ontology change management 

solution has to answer a number of questions [9]. First 

question is posed to the systems’ overall working, “how to 

maintain all the changes in a consistent and coherent 

manner?” Other questions revolve around the applications of 

all these logged changes for the purpose of ontology 

recovery and understanding for the semantics of change. 

Search in semantic-based information retrieval 

techniques is performed by interpreting the meanings of 

keywords (i.e., semantics) provided by domain ontology. 

Ontology together with instances of the class constitutes a 

knowledgebase. This information is stored in Jena based 

triple store with embedded semantics. Now the semantics of 

keywords are identified through the relationships between 

keywords by performing semantic similarity on them [3, 4, 

10, 11] and the identified semantics contribute to increase 

the precision of search results. The proposed framework is 

scalable in a sense, when new documents are found; 

information contained in them is extracted and stored in 

knowledgebase which may require the evolution of 

knowledgebase. The detailed experimental results show that 

each module of proposed framework outperforms the 

discussed systems. 

This paper is arranged as follows: Section 2 describes the 

existing research work in the field of semantic searching. In 

Section 3 we present our proposed architecture in detail. 

Experimental results are provided in Section 4. Finally, we 

conclude our findings in Section 5 and talk about the future 

directions. 



II. RELATED WORK 

Various semantic-based techniques have been used to 

improve precision and recall of search engines. Ontology 

based system proposed in [10] uses traditional vector space 

model (VSM), using the term frequency (tf) and inverse 

document frequency (idf), to carry semantic matching 

between documents. The system is only restricted to 

inheritance relationship while inferring the domain 

ontology. The framework proposed in [3] improves 

precision by extending the semantic matching to incorporate 

other relationships by defining weighting scheme to assign 

different weights to search terms while encountering 

different relationships between them. The SSR Model in 

[12] finds similar search terms and assigns them initial 

weights using tf.idf. Then higher weights are assigned to the 

search terms located in the same semantic neighborhood. 

However, we argue that the probability of encountering a 

keyword in a document is not an adequate measure to 

determine that the search terms is a suitable representative 

for any given context. Context-dependent approaches [13] 

extended VSM using tf.idf method to obtain weighted 

taxonomy to demonstrate the context. They argue that their 

weighted taxonomy assigns high similarity score to the 

search terms in general context and low similarity score for a 

specific context. 

In contrast to VSM, the feature based method computes 

similarity between concepts by exploring their properties or 

features. The method employed in [4] uses normalized form 

of Tversky's model [14] to measure the similarity between 

concepts, based on their features that include synonyms, 

semantic neighborhood, attributes and parts. To determine 

the concept to be a representative of given context requires 

concentrating on its thematic behavior (i.e., the concept and 

its relationship in the text). 

Systems using semantic distance based approach also 

exist, mostly used in graph matching such as [11, 15, and 

16]. The idea is to define the distance between two concepts 

with respect to their position in the concept or relationship 

hierarchy (from their closest common parent). The basic 

intuition in conceptual graph (CG) matching is to calculate 

semantic matching by comparing arcs. The arc in CG 

comparison enables to determine the concept to be a 

representative of given context by concentrating on its 

thematic behavior (i.e., the concept and its relationship in the 

text). We inherent the same thematic behavior while 

performing semantic matching between the search terms in 

digital documents and domain ontology using RDF triples. 

The domain ontology is populated with the triples extracted 

from the digital documents that are parsed semantically. 

III. SEARCHING DIGITAL DOCUMENTS 

In this section we will discuss architecture for a search 

engine that intelligently searches digital documents from 

distributed document repositories. The detailed component 

wise introduction is published in [17], while here we mainly 

focus on components working and their results. Our 

assumption is that the documents have already been crawled 

from distributed repositories. Information contained in these 

documents is extracted and stored in Jena based triple store 

where it is searched intelligently. Figure 1 shows the overall 

framework architecture of our system. The architecture 

comprising of three main modules: (a) Knowledge Extractor, 

(b) Ontology Change Management, and (c) Search Module. 

A. Knowledge Extractor 

Figure 1 (a) shows our knowledge extractor module. In 

this module, semantically enriched context-aware metadata 

of a document is generated. The metadata extraction steps 

are as follows. 

Standard Document Format: Since digital documents are 

unstructured and in heterogeneous data formats.  The first 

step is to transform the unstructured and heterogeneous data 

formats into one semi-structures format to be processed 

further, such as, XML, which ultimately improves the 

machine readability of the documents. After this the standard 

format is processed component wise as explained below. 

Component Identification: Every document comprises of 

various components, for instance, research documents 

comprises of: abstract, background, and conclusion. 

Rhetoric Structure (RS) [18] ontology defines components 

of scientific publications. Since each component has its 

importance in document, based on this importance weights 

are assigned to components. 

Term Extraction: In this step, terms are extracted from each 

component of a document and are then categorized as: 1) 

Single Word Terms, 2) Compound Word Terms. The single 

word terms are easily extracted, while compound word terms 

are extracted using the stop-word based mechanism that 

consider the words as compound word until a stop-word is 

reached. TF/IDF [19] of the terms is computed with respect 

to documents and its components. 

Lexical Analyses: Job of this module is to: 

• Parts of Speech Tagging (POS):  POS tagging (a) 

assigns POS to each term based on thesaurus, and (b) 

discards unwanted POS except nouns and verbs. 

• Stemming: is a process for reducing inflected (or 

sometimes derived) words to their stem, base or root 

form – generally a written word form. In addition, we 

maintain a list of suffixes combinations that need 

special treatment as if they are trimmed off, the 

context of the concept change. Some of the succeeding 

element are “ing”, ‘s’, “ers”. In other word, it helps in 

identifying concepts in the documents. 

• Concept Clustering: A document may contain 

multiple instances of a concept. After stemming 

process multiple instances of a concept are clustered 

on the bases of document. The clustering generate a 

three dimensional graph with its axis as documents, 

concepts and their respective frequency.  

Weight of each concept is calculated with respect to the 

component in the document and is calculated as:  

      ---------     (1) 

Where WCi is total weigh of concept, tfidf is term frequency 

/ inverse document frequency, n is total no of concepts, Cp is 

weight of the component and N is size of the corpus. 



 
 

Figure 1, System architecture of intelligent search in digital documents [17]. 

Hierarchy Identification: After concepts clustering, 

synonyms for each concept are identified. OntoWordNet is 

used for this purpose, using this; the broader and narrow 

concepts are also identified to form a hierarchy. 

Knowledge Representation: The identification of narrow and 

broader concepts helps in specifying the super-class and 

sub-class relationship. When the relationships are identified, 

a semantic structure is generated and expressed in form of 

triple. 

Knowledge Verification: After knowledge representation in 

the form of triples, then the consistency and quality of the 

semantic knowledge has to be verified. The SemRef and 

SemEval [18] are used to ensure the quality of the semantic 

metadata. 

We utilize the syntactic and semantic measures to 

increase the quality of the metadata. The advantage over 

tradition metadata is that we use the Rhetoric Structure for 

correlating the concept – concept relationship with the 

document component which improves the preciseness and 

accuracy. 

B. Change Management 

Ontology is formal description of shared 

conceptualization of a domain of discourse. They evolve 

with the passage of time, when the perspective under which 

the domain is viewed has changed [20]. The evolution 

process deals with the growth of the ontology i. e., 

modifying or upgrading ontology when there is certain need 

for change or there comes a change in the domain 

knowledge. 

Ontology change management module as given in Figure 

1 (b), have two basic operations: 

• Ontology Enrichment: When the knowledge extractor 

produces totally new changes (concepts and slots), 

which are not present in domain ontology 

(knowledgebase), and then these are added to the 

domain ontology. So we enrich our ontology to 

accommodate the new changes and also populate our 

ontology for its instances. 

• Ontology Population: When we get new concept(s) i.e., 

simple or aggregated, which is already present in the 

ontology. Then only instance of this concept(s) is 

introduced and the knowledgebase is populated. 

After receiving the extracted metadata from the 

knowledge base, this module enriches and populates the 

knowledgebase. Input for this process is domain ontology, 

and the emerging concepts (local ontology of digital 

documents) received from Knowledge Extraction module. 

Working of this module is: 

Change Detection and Description: The first step in the 

process is to detect new changes. Schema and individual 

level differences are detected effectively, as reported in [21]. 

In case, the concept in focus is totally new, then H-Match 

algorithm [22] is used. Its Semantic Affinity measure 

provides the contextual matching facility through set of four 

models: surface, shallow, deep, and intensive. It takes the 

new concepts for addition and domain ontology as input and 

returns the best matching concept in the ontology. The 

taxonomic position identification for the concept is given in 

[23]. 

After this, every identified change is represented in a 

proper and consistent format, where these changes may be 

atomic or composite. Changes are first assembled in a 

sequence, and then this sequence is followed for 

implementing the changes on domain ontology. Process of 

atomic changes is followed that consider all composite 

changes as an ordered sequence of atomic changes as well. 

Finally, the changes are represented using Change History 

Ontology (CHO) [9]. We use the same representation for 

logging the ontology changes in the Change History Log 

(CHL). 

If, there is no new changes received from the Knowledge 



Extractor, then this module forward the extracted 

information to change propagation module, which populate 

the instances in knowledgebase. 

Inconsistencies Detection: Here ontology changes are 

resolved systematically to ensure that consistency of the 

ontology is not lost. Ontology may become inconsistent 

because of the new changes. Types of inconsistencies can be, 

1) syntactic: when undefined entity at ontology or instance 

level is used, 2) semantic: when meaning of entity is changed 

due to performed changes. To keep ontology consistent, 

deduced changes are introduced. A complete request of, 

required changes and the deduced changes are made. KAON 

API [24] to identify alternative deduced changes. These 

changes are presented to the ontology engineer and then 

ontology engineer selects changes from the available 

alternatives. 

Change Implementation & Verification: All the induced and 

deduced changes, which make a complete change request, 

are applied to the ontology. This module is designed to 

manage three characteristics. 1) When a change is applied 

then it should complete in isolation, must be atomic, durable, 

and consistent. 2) After every change implementation, 

change verification is made to verify that the required 

changes have been committed to the ontology. 3) After every 

change implementation the change must be logged in the 

change log, to keep track of all the implemented changes in 

an ordered manner. This helps in undoing changes by 

reversing the logged changes on ontology. 

Change Propagation: It has two basic operations. 1) If there 

are no new changes in the local ontology, verified by Change 

Detection and Description module, then the instances of 

local ontology are simply populated in the knowledgebase. 

2) If new changes were requested and also implemented 

through the above steps, then these changes are propagated 

to the domain ontology and it evolves to a new state. The 

instances of local ontology are populated in the 

knowledgebase according to the evolved domain ontology. 

 
Figure 2. Snapshot representing core classes of Change History Ontology 

(CHO) 
 

Change History Log (CHL): It is a repository that keeps 

track of all the changes made to the domain ontology. It 

stores every change after it is being implemented in change 

implementation phase. CHL is also required for reversibility 

purpose when an ontology engineer want to undo or redo 

some of the changes then this log is accessed and changes are 

simply reverted. The log uses Jena based triple store and the 

change description is provided by Change History Ontology 

(CHO) shown in Figure 2, to preserve the changes for later 

use. The baseline for CHO is the Log Ontology presented by 

Yaozhong David Liang [25]. We have modeled quite a few 

extensions to Log Ontology and come up with CHO as 

shown in Figure 2. Some of the extensions include:  1) 

Capturing such provenance information as the change 

author, reason, timestamp. 2) We introduced a class 

OntologyChange. It has further subclasses including 

AtomicChange and ChangeSet. The AtomicChange tackles 

with all types of changes that can be applied to ontology at 

its class and property, and Instance level, which are addition, 

deletion, updating, and renaming. 3) ChangeSet holds 

information about the changes that whether it is an instant or 

composite and stretched change over a defined time interval. 

ChangeSet also helps in properly maintaining the sequences 

of the changes applied. With ChangeSet, all the changes of 

some defined time interval are organized and managed 

together, which help us to undo/redo the changes. 

C. Document Searching 

In this module (shown in Figure 1 (c)), we employ RDF 

triples instead of keywords searching in order to concentrate 

on the context of the search term. A user submits search 

query in the form of RDF triple(s), which is answered using 

knowledgebase. The user submitted query is parsed into 

Spar-QL query. The search query is analyzed by the 

semantic matcher, to generate one or more standard Spar-QL 

queries. The searching is performed using the extended 

queries to identify the relevant documents for the user query. 

The relevance score of documents is computed by Ranker to 

sort the identified documents. This module has two main 

components shown in Figure 1 (c): Semantic Matcher and 

Ranker. 

Semantic Matcher: In Search Module, the semantic matcher 

is the main component which is responsible for query 

answering/searching. In first step, the RDF query is 

augmented with synonym [3, 12, 16], semantic 

neighborhood [4] and other relationships such as hyponym 

[4, 12, 26] (i.e., Is-A relationship) and Meronym (i.e., 

Part-of) [4, 12]. The equivalent Spar-QL queries are 

generated for augmented RDF triples to perform searching. 

We have used different semantic properties to relate 

different concepts. 

• synOf: The synOf property states that different 

individuals are the same (i.e., equivalence relationship). 

It is used to deal with synonyms, acronyms, and lexical 

variant heterogeneity issues. For example <author> 

synOf <writer>. 

• neighborOf: The neighborOf property is used to explore 

the semantic neighborhood of concept's relationships. 

The semantic neighborhood (n) of a concept c is the set of 

the set of Cs whose distance d to the concept c is less than 

or equal to a non-negative integer r, called radius of the 

semantic neighborhood. The semantic neighborhood 

with radius r =1, represents subclass, super class and 

part-whole relationships. 

)2(),(}{),( rCcdthatsuchCrcn ss ≤∀=  



In second step, similarity between query and source RDF 

triple is computed using distance based approach [11, 15, 

and 16]. 

Semantic Similarity: Interpreting the keywords with respect 

to the context requires obtaining similarity between concepts 

and relationships (i.e., thematic similarity). We focus on 

thematic similarity by matching RDF triples to concentrate 

on both aspects together. 

• Concepts Similarity: Concepts similarity is measured by 

calculating the distance between them [11, 15, 16]. The 

distance is calculated between different concepts from 

concepts position in the hierarchy. The position of a 

concept in a hierarchy defined in [16] is as follows. 

)3(
2/1

)(
)( nlk

nmilestone =  

Where ‘k’ is a predefined factor larger than 'one' that 

indicates the rate at which the value decreases along the 

hierarchy, and l(n) is the depth of the node ‘n’ in 

hierarchy. For the root of a hierarchy, l(root) = 0. For any 

two concepts in the hierarchy, have closest common 

parent (ccp). The distance between two concepts c1, c2 

and their ccp will be determined by their closest common 

parent as follows: 

)4(),(),(),( 2121 ccpcdccpcdccd ccc +=  

)5()()(),( 11 cmilestoneccpmilestoneccpcd c −=
 

Thus, the similarity calculation between two concepts, c1 

and c2, as follows: 
 

)6(),(1),( 2121 ccdccsim cc −=  

There are some exceptions that if the concept c1 and 

concept c2 are synonym or acronym of each other, the 

distance will be set to zero, i.e., the similarity between 

these two concepts will be 'one'. We consider synonym 

and acronym relation between concepts are at the same 

level. 

• Relationship Similarity: Likewise, the similarity 

between two relationships is defined as follows: 
 

)7(),(1),( 2121 rrrdrrrsim −=  

The distance between two relations is also calculated by 

their respective positions in the relation hierarchy. The 

only difference is that the relation hierarchy is 

constructed manually by us. There are some exceptions 

that if relations r1 and r2 are synonym or acronym of each 

other than the distance will be set to zero, consequently 

the similarity between these two relations will be 'one'. 

• RDF Triple Similarity: The user query and data source 

RDF triples are matched to find their similarity. The final 

triple similarity matching formula by combining (6) (for 

concepts similarity) and (7) (for relations similarity) is as 

follows: 
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Where qsub , qobj and Ssub , Sobj are matched concepts 

while qr and Sr matched relation of query RDF triple q 

and source RDF triple S respectively. Sim(q, s) is the 

overall similarity between query (q) and source (S) RDF 

triples. Here i and j represent i
th
 and j

th
 subject or object 

or relation of query and source RDF triples respectively. 

Semantic Reasoning: To infer knowledge from existing 

metadata (knowledgebase), different rules have been 

defined in the respective rule bases. Some of the rules are: 

inverseOf and transitiveOf. 

• InverseOf Rule: The inverseOf rule defines the relation 

taken ‘backwards’.  If two concepts c1 is related to c2 

with relation R then c2 will be related to c1 with R
-1. 

Figure 3, shows the N3 representation of inverseOf rule 

in semantic web rule language (SWRL). 
 

:Def-inverseOf @swrl("(?x neighborOf ?y) -> (?y  neighborOf ?x)"). 

Figure 3. A snippet of' inverseOf rule 
 

• TransitiveOf Rule: The transitiveOf rule defines if c1 is 

related to c2 and c2 is related to c3 with relation R then 

there exist relation R between c1 and c3. Figure 4 shows 

the N3 representation of transitiveOf rule in SWRL. 
 

:Def-transitiveOf @swrl("(?x neighborOf ?y) (?x synOf ?w) (?y synOf ?u) -> 

(?w neighborOf ?u)"). 

Figure 4. A snippet of transitiveOf  rule 

 
Documents Ranking (R(d)): Identified relevant documents 

through the Semantic Matcher are passed to the Ranker, 

which sort them according to their relevance to the users 

query. The ranking algorithm of the Ranker combines two 

factors:  1) the RDF triple score is calculated and 2) its 

relevance to a document indicated by Wi using equation (6). 

The documents relevance R (d) can be calculated as: 

)9(),()(
0

∑
=
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n

i

iii WsqsimdR  

Where n be the total number of triples in a document. The 

documents are ranked according to their relevance score and 

returned to the user. 

IV. IMPLEMENTATION AND RESULTS 

To retrieve context-aware information from digital 

documents in the repositories, we have implemented all the 

three modules of our framework architecture and verified 

their results. There is no such system available that claim all 

the features our system provides so that we can compare our 

proposed system with. But there are individual components 

been developed by different researchers, so we compare our 

system component wise. We also discuss the results of our 



three modules with different data sets that we used to 

validate their functionality. 

A user defined data set has been prepared for the 

evaluation of the Knowledge Extractor module because 

standard data set is not available for system testing and 

evaluation in the specified domain. The statistics of the data 

set are shown in Table 1. The system evaluation has been 

divided into three units: 1) section detection and segregation, 

2) compound word extraction and, 3) semantic annotation 

generation. Here we discuss the semantic annotation 

generation results (end triples generated by Knowledge 

Extractor module) against existing systems. 

TABLE 1. DATA SET SPECIFICATIONS 

No of documents 20 

Average document size 5 – 7 pages 

Average sections per document 

(physical) 

5-7 

No of corpses 2 (10 document each) 
 

In semantic annotation generation, Semantic Annotation 

Platforms (SAP’s) generally follow the standard evaluation 

criteria of annotation precision, annotation recall, and 

annotation f-measure details given in [27]. Here, the 

proposed system is compared with the existing systems such 

as Onto–O–Mat: PANKOW [28], SemTag [29], AeroDML 

[30], and KIM [31]. The results comparison of proposed 

system with the above mentioned systems is shown in Figure 

5, while their detail working comparison is given in Table 2. 

From the graph, it is evident that AeroDAML system has 

more precision than our system Semantic Annotations 

Engine (SAE). But, our system outperforms AeroDAML in 

annotation recall and annotation f-measure. The main reason 

of AeroDAML having more annotations precision is using 

bootstrap ontology for the extraction of concepts from the 

digital documents. It associates concepts based on user 

knowledge not on representation in document. 

 

 

Figure 5. SAP Comparison 

To validate whether the ontology change management 

work appropriately for the overall mechanism, we have 

tested it for ontology enrichment and population. To 

evaluate the change capturing capability of our change 

management module, we developed as prototype Protégé 

plug-in, we compared it with another plug-in i.e., 

ChangesTab of Protégé. Both the plug-ins (i.e., ChangesTab 

and Change Tracer) were enabled in Protégé and changes 

were made to ontology (Documentation Ontology). 35 

random changes were made to the Documentation ontology 

covering all the four different categories (i.e. Change in 

Hierarchy, Change in Class, Change in Property, and Other 

Changes). Out of these 35 changes, ChangesTab of Protégé 

was able to capture 26 changes while our plug-in i.e., 

Change Tracer captured 31 changes. The graph representing 

these results is given in Figure 6; where y-axis represents the 

number of changes captured and x-axis represents the 

number of changes made. The experiment was repeated 

several times and Change Tracer showed better results than 

ChangesTab. 

TABLE 2. COMPARISON OF EXISTING SYSTEMS AGAINST SAE 

Platform  Method  
Machine 

Learning 

Manual 

Rules 

Bootstrap 

Ontology 

AeroDAML 
[30] 

Rule N N Wordnet  

KIM [31] Rule N Y KIMO 

Onto –o – Mat: 
PANKOW [28]  

Pattern 
Discovery  

N N User  

SemTag [29] Rule N N Tag  

SAE Rule Y Y No 

 

Results for the recovery of crashed or changed ontology 

is provided, where validation and verification of the outcome 

of the recovery process is an essential and critical aspect. 

There has to be a mechanism to prove the hypothesis that the 

output ontology, after applying the recovery process on top 

of the Change History Ontology (CHO) [9], is correct. In 

order to quantitatively measure the performance of the 

recovery algorithm, an evaluation measure has been used 

and we have published it in [32]. The Ontology Metadata 

Vocabulary (OMV) is used by the community for better 

understanding of the ontologies for the purpose of properly 

sharing and exchanging the information among 

organizations. To achieve this goal, this standard is set and 

agreed by the community for sharing and reusing of 

ontologies. OMV has different versions available online 

containing different set of concepts, properties, and 

restrictions. We have tested our recovery algorithm on three 

different versions of OMV
1
 (i.e., omv-0.6.owl, omv-0.7.owl, 

and omv-0.91.owl). 
 

 
Figure 6. Comparison of Change Tracer against ChangesTab of Protégé 

                                                           
1 http://ontoware.org/frs/?group_id=39 



Table 3 shows details about the types and number of 

changes among different versions. These changes are 

captured and stored in CHL with the help of Change Tracer 

[32]. Using these logged changes we applied the roll back 

and forward procedure given in [32], which resulted in 

recovered versions. The recovered versions were compared 

with the original versions using Prompt Tab in Protégé and 

also checked manually. After the comparisons, all the 

recovered versions were found exact with the original 

versions. 

TABLE 3. NUMBER AND TYPES OF CHANGES AMONG DIFFERENT VERSIONS 
OF OMV ONTOLOGY 

Ontology Versions OMV.owl & 

OMV-0.7.owl 

OMV-0.7.owl & 

OMV-0.91.owl 

Total Changes 38 189 

Change in Hierarchy 18 71 

Change in Classes 6 34 

Change in Properties 25 123 

 

The prototype system for semantic search takes different 

queries as shown in Figure 7. Query_1 is simple, so 

precision of all the systems on this query is quite high, 

whereas Query_2 is not simple so the precision of VSM is 

quite low. The precision of intelligent search is better than 

VSM but expanding the context-aware search in semantic 

neighborhood shows improved results as compared to other 

approaches with respect to precision and recall. The 

proposed intelligent searching approach has better precision 

than VSM and simple semantic-based searching. The 

improvement in recall is also observed in our approach by 

expanding concepts in semantic neighborhood. 

Query_1: Show all IEEE conference paper by ‘levi’ ? 

RDF Query Pattern: 

(?p :writtenBy :Levi) 

(?P :hasType :Conference) 

(?p :hasPublicationOrganization :IEEE). 

 

Query_2: Find papers about the use of ontologies in Data Integration in the year 2005? 

RDF Query Pattern: 

(?p :hasContent :ontologies) 

(?p :isAbout :Data Integration) 

(?p :hasPublicationYear :2005). 

…. 

  

Figure 7. Different Query examples in RDF 
 

Figure 8, shows the comparison graph between the 

results of VSM, context-aware search and context-aware 

search with semantic neighborhood (our system). The 

experiment is carried out with a collection of manually 

classified 633 documents, related to master’s research thesis, 

each containing 50-100 RDF triples. The research 

publication ontology, containing 719 concepts, is used in the 

experiment as the domain knowledgebase. Table 4 shows the 

comparison between the other principal approaches used by 

the existing systems and our proposed approach. The 

comparison shows that our approach significantly improves 

the precision by introducing context awareness but recall 

may vary (i.e., either low or high). 
 

 

Figure 8. Precision-Recall illustration of VSM, Context Aware & 

Context-Aware Semantic with semantic neighborhood Approach 
 

TABLE 4. COMPARISON BETWEEN PRINCIPAL MEASURE AND OUR APPROACH 

IR Systems Similarity 

Method 

IR Type Precision* Recall* Context 

Awareness 

DOSE [10] VSM Keyword-Base

d 

Low High No 

IR 

Framework 

[3] 

VSM Semantic- 

RDF Based 

Average High No 

SSRM [12] Hybrid Semantic- 

Keyword 

Based 

Average Average No 

Context-Depe

ndent [13] 

VSM Semantic- 

Keyword 

Based 

Average High Yes 

Our ApproachHybrid Semantic- 

RDF Based 

High Average Yes 

*Precision & Recall : High >0.65, Average>=0.35 and <=0.65,  Low<0.35 

 

V. CONCLUSION 

In this research articles, we presented architecture for 

context-aware search engine for digital repositories, based 

on the semantic metadata retrieved from digital documents. 

RDF triples are used instead of keywords matching 

technique. The subject, property and object of RDF triple 

enabled the search module to concentrate on the 

combination of concepts and their relationship similarity at 

the same time. We maintain knowledgebase to store 

metadata using domain ontology. In semantic matcher, user 

submitted query is expanded with synonym and semantic 

neighborhood. It is then rewritten for generated search 

terms. The proposed architecture resulted in improved 

precision of search results. 

Currently, we are focusing on metadata retrieval from 

digital documents, knowledgebase maintenance, and 

semantic search module for achieving good precision. In 

future we are going to extend the architecture, so that it can 

handle other data structures like graphs, tables, instead of 

only text from research articles. 
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