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ABSTRACT
Human pose estimation in real-time is a challenging prob-
lem in computer vision. In this paper, we present a novel ap-
proach to recover a 3D human pose in real-time from a single
depth human silhouette using Principal Direction Analysis
(PDA) on each recognized body part. In our work, the hu-
man body parts are first recognized from a depth human
body silhouette via the trained Random Forests (RFs). On
each recognized body part which is presented as a set of
3D points cloud, PDA is applied to estimate the principal
direction of the body part. Finally, a 3D human pose gets re-
covered by mapping the principal directional vector to each
body part of a 3D human body model which is created with
a set of super-quadrics linked by the kinematic chains. In
our experiments, we have performed quantitative and qual-
itative evaluations of the proposed 3D human pose recon-
struction methodology. Our evaluation results show that
the proposed approach performs reliably on a sequence of
unconstrained poses and achieves an average reconstruction
error of 7.46 degree in a few key joint angles. Our 3D pose
recovery methodology should be applicable to many areas
such as human computer interactions and human activity
recognition.

Categories and Subject Descriptors
I.4 [Image Processing and Computer Vision]: Scene
Analysis, Reconstruction—Depth cues; I.5 [Pattern Recog-
nition]: Models; H.5 [ Information Interfaces and Pre-
sentation]: HCI
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1. INTRODUCTION
Recovering 3D human body poses from a sequence of im-

ages in real-time is a challenging problem in computer vi-
sion. Many potential applications of this methodology in
daily life include entertainment game, surveillance, sport
science, health care technology, human computer interac-
tions, motion tracking, and human activity recognition [12].
In the traditional systems, human body poses are recon-
structed solving inverse kinematics using the information of
optical markers that are attached to the human body parts
and tracked by multiple cameras. These marker-based sys-
tems are capable of recovering accurate human body poses,
but they are not suitable for real-life applications due to
the sensor attachment, multiple camera installation, expen-
sive equipment, and complicated setups [13]. In contrast to
the marker-based approaches, some recent studies have fo-
cused on markerless-based methods which could be utilized
in daily applications. Typically, this markerless system is
based on a single image or multi-view images [14, 15, 18].

Recently, with an introduction of depth imaging devices,
3D human pose reconstruction from a single depth image
without optical markers or multi-view images has become
an active research topic in computer vision. Some studies
have explored novel approaches in human pose estimation
methodologies based on this depth information [7]. In [16,
17], depth data was used to build a graph-based represen-
tation of a depth human body silhouette and from which
the geodesic distance map of the body parts was computed,
finding the primary landmarks such as the head, hands, and
feet. Finally, fitting a skeleton body model to the land-
marks would provide a recovered human pose in 3D. In [4],
using the information of primary landmarks as features of
each pose, matching pose was found from the pose database
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(DB) coded in the tree structure. In [6, 8, 9], depth data was
presented as 3D surface meshes and then a set of geodesic
feature points as head, hands, and feet was found to estimate
a human pose. These approaches are generally based on the
accurate alternative representation of the depth human body
silhouette and accurate detection of the body parts.
Another approach in 3D body pose reconstruction utilizes

a learning methodology by which each body part gets recog-
nized, and then from the information of the recognized body
parts, its corresponding 3D pose gets reconstruction. In [21],
the authors developed a new algorithm based on expecta-
tion maximization (EM) with two-step iterations: namely,
body part labeling (E-step) and model fitting (M-step). The
depth silhouette and the estimated 3D human body model of
this method were represented by a cloud of point in 3D and
a set of ellipsoids, respectively. Each 3D point of the cloud
was assigned and then fitted to one corresponding ellipsoid.
This process was iterated by minimizing the discrepancies
between the model and depth silhouette. The speed of the
algorithm was slow to be realized in real-time due to high
computational cost for labeling and fitting. In [19], a new
approach was developed to efficiently predict 3D position of
body joints from a single depth image. In their work, they
treated human body part detection like an object classifica-
tion task. Therefore, the human body part recognition of
the depth image was inferred as a per-pixel classification via
some randomized decision trees trained using a large DB of
synthetic depth images. This allowed a real-time and effi-
cient identification of human body parts: it could recognize
up to 31 body parts from a single human depth silhouette.
To model 3D human pose, they then applied mean-shift algo-
rithm on the recognized human body parts to estimate joint
positions. The result of estimated 3D human pose was re-
constructed and visualized by the joint positions. However,
joint position estimation from the recognized body parts via
the mean-shift algorithm generally suffers from the follow-
ing limitations: (1) the position of estimated joints depend
on the shape and size of subject; (2) the computed modes
lie on the surface of the body parts, whereas the position of
joints are inside of the parts; (3) the methods require an ar-
bitrary definition of body parts that roughly align with the
body joints; and (4) the 3D human body model is a simple
skeleton without constraints on the position of the joints.
In this paper, to overcome the limitations of the previ-

ous approaches [21, 19], we propose an improved real-time
3D human pose estimation algorithm based on Principal Di-
rection Analysis (PDA) of each recognized body part from
a single depth image. In our work, human body parts of
the depth silhouette are first recognized via the trained RFs
with our synthetic training DB and RFs [3]. To recover 3D
human body pose, we propose a new algorithm of analyzing
the recognized body parts for the principal direction vectors,
improving the limitations of the mean-shift. The directional
vectors are then mapped to the each body part of the 3D
human body model to make the 3D estimated human pose.
In addition, our 3D human body model also uses the kine-
matic chains with constraints to limit the movement. Our
proposed methodology could be useful in human computer
interactions and human activity recognition applications.
The rest of the paper is organized as follows. Section 2

introduces the processes of the proposed methodology in-
cluding synthetic DB creation, RFs for pixel-based classi-
fication, body parts recognition, PDA, and reconstruction

(a) (b) (c)

Figure 2: (a) A 3D graphic human body model
used in a silhouette DB generation, (b) a body part-
labeled model, and (c) a depth silhouette in the syn-
thetic DB.

of 3D human pose model. Section 3 presents experimental
setups and results. Conclusion remarks are given in Section
4.

2. METHODOLOGY

2.1 Overview of the proposed system
Our work focuses on estimating a 3D human pose from a

single human depth silhouette. Figure 1 shows the key steps
of our proposed 3D human pose estimation. In the first step,
a single depth image gets captured by a depth camera. The
human depth silhouette is then extracted by removing the
background. In the second step, human body parts of the
silhouette are recognized via the trained RFs. In the third
step, the principal directions of the recognized body parts
are estimated by PDA. In the finally step, these directions
are mapped on to the 3D human body model, resulting in
the estimated 3D human body pose.

2.2 Body part recognition
As aforementioned, to recognize the body parts from a

depth human silhouette, we utilize RFs as performed in [5,
19]. However, this learning-based approach requires a train-
ing DB. In this work, we have created our own training DB
synthetically. More details are given in the following sub-
sections.

2.2.1 A synthetic DB of depth human pose silhou-
ettes and corresponding body parts labeled maps

In order to create the training DB, we have created syn-
thetic human body models: we have utilized 3Ds Max, a
commercial 3D graphics package. The body model consists
of a total 31 body parts [19]. To create various poses, motion
information from CMU [1] is mapped to the model. Finally,
a pair of depth silhouette and its corresponding body part-
labeled map is saved into a DB: the DB contains 20.000
of depth maps and corresponding body parts labeled maps.
Figure 2 shows a set of samples of the human body model,
the maps of the labeled body parts, and the depth silhouette
respectively. The size of images in the DB is 320 x 240 with
the 16-bit depth values.

2.2.2 Depth feature extraction
In our work, the depth features are computed from the

differences of a neighboring pixel pairs. The depth features
f are extracted from a pixel x of the depth silhouette as
done in [11, 19]
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Figure 1: The key processing steps of our proposed system. These steps take the depth image, remove background, 
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Figure 1: The key processing steps of our proposed 3D pose estimation system. These steps take the depth
image, remove background, label human body parts, apply PDA of the human body parts, and finally estimate
3D human pose.

fθ(I, x) =

[
dI

(
x+

o1
dI(x)

)
− dI

(
x+

o2
dI(x)

)]
(1)

where dI(x) is the depth value at pixel x in image I, and pa-
rameters θ = (o1, o2) describe offset o1 and o2. In our work,
the maximum offset value of (o1, o2) pairs was 60 pixels cor-
responding to 3 meters distance from actor to camera. The
normalization of the offset by 1

dI (x)
ensures that the features

are distance invariant.

2.2.3 RFs for classification
RFs are a combination of tree predictors such that each

tree depends on the values of a random vector sampled in-
dependently and with the same distribution for all trees in
the forest [5, 10].
In our work, to create the trained RFs, we used an en-

semble of 5 decision trees in RFs. The maximum deep of
trees was 20. Each tree in RFs was trained with a different
pixel set of randomly synthetic depth human pose silhou-
ettes and their corresponding body part indices. A subset
of 2000 training example pixels was drawn randomly from
each synthetic depth human pose silhouette in the DB. An
example pixel was extracted to get 2000 candidate features
as computed using Eq. 1. A subset of 50 candidate features
was considered at each splitting node in the tree. For each
depth pixel classification, each pixel of a tested depth silhou-
ette was extracted to get 2000 candidate features. Based on
all built trees in RFs, at each tree, starting from the root
node, if the value of splitting function is less than a thresh-
old of the node, go to left and otherwise go to right. The
optimal threshold for splitting the node is determined by
maximizing the information gain for particular features in
training process. At the leaf node reached in each tree, the
probability distribution over 31 human body parts is com-
puted. Final recognized result of the pixel is based on the
voting result of all trees in RFs.

2.3 Principal direction analysis (PDA)
In this section, our objective is to find principal direc-

tional vectors from the recognized body parts. If we denote
the recognized body parts as {P 1,P 2,...,PM} where, M is
the number of body parts. Each body part is a 3D point
cloud P consisting of the n 3D points P={yi}ni=1, the value

of n changes depending on the size of body parts. The 3D
point clouds {P i}Mi=1 are used to determine principal direc-
tion vectors { V 1

d , V
2
d ..., V M

d } by the PDA algorithm. More
details of PDA are given in the following sub-sections.

2.3.1 Outlier removal
The recognized body parts which are represented as clouds

of points contain some outlier and mislabeled points. These
incorrect points can hinder the PDA analysis, resulting in
inaccurate directional vectors of the body parts. Therefore,
before applying PDA, we have devised a technique to select
only effective points from the cloud which are subject to
PDA. In order to select effective points from the cloud, we
have devised a technique to estimates the weight values of
all points in the selected cloud utilizing of a logistic function
and the Mahalanobis distance.

The logistic function of the population w can be written
as

w(ti) =
C

1 + eα(ti−t0)
(2)

where, t0 denotes the rough threshold value that is defined
based on the size of radius of the clouds of points, α a con-
stant value, and C the limiting value of the output (in our
case C = 1). Here, t0 and α are chosen based on the shape
and size of each body parts. ti is the Mahalanobis distance
computed at pixel ith in the point cloud and it is computed
by the Mahalanobis distance written as

ti =
√

(yi − µ)T (S)−1(yi − µ) (3)

where, yi is the ith 3D point in the cloud, µ is the mean
vector of the cloud and S is the covariance matrix of the
cloud and it is computed as

S =

n∑
i=1

(yi − µ)(yi − µ)T

n
. (4)

2.3.2 PDA algorithm
This part presents how to estimate the directional vectors

Vd from the selected point clouds Pm. We apply a statis-
tical approach to estimate the PDA mean vector µ∗ and
covariance matrix S∗ using the weight value of each point
from Eq. 2. The mean vector and the covariance matrix are
calculated as follows
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µ∗ =

∑n
i=1 w(t2i )yi∑n
i=1 w(t2i )

, (5)

S∗ =

∑n
i=1 w(t2i )(yi − µ∗)(yi − µ∗)T∑n

i=1 w(t2i )− 1
. (6)

To estimate a direction vector Vd from a cloud Pm. The
problem can be expressed as

Vd(Ek) = argmax
∥Ek∥3k=1

(ET
k S

∗Ek) (7)

where, E is an eigen-vector matrix of S∗. The details of the
PDA algorithm are presented in Algorithm 1. Some com-
parison results of the PDA analysis without outlier removal
and with outlier removal are shown in Figure 3.

Algorithm 1 Principal Direction Analysis (PDA)

Inputs: Given a 3D point cloud Pm

Outputs: A principal direction vector Vd

Method:

Step 1. Find the mean vector µ and the covariance matrix
S of the point cloud Pm, Eq. 4.

Step 2. Compute the Mahalanobis distance of all points in
the cloud Pm with its mean vector µ and covariance
matrix S, Eq. 3.

Step 3. Assign the weight value for all points in the cloud
Pm using logistic function and the vector of deter-
mined Mahalanobis distance, Eq. 2.

Step 4. Compute the PDA mean vector µ∗ and PDA co-
variance matrix S∗ of the point cloud Pm with using
the assigned weight value of each point as Eqs. 5 and
6.

Step 5. Find the eigen-vector corresponding to the largest
value of eigen-value computed from the covariance ma-
trix S∗ in Eq. 7. The eigen-vector is a determined
principal direction vector Vd.

2.4 A 3D synthetic human model
To reconstruct and visualize an estimated 3D human pose,

we utilize a 3D synthetic human model that is created by a
set of super-quadrics. The joints of the model are connected
with a kinematic chain and parameterized with rotational
angles at each joint [21, 20]. Our 3D synthetic human body
model is defined in the 4-D projective space as

me(X) = XTV T
θ QTDQVθX − 2 = 0 (8)

where X is the coordination of the 3D point on the surface of
super-quadrics. D is a diagonal matrix containing the size of
super-quadrics. Q locates the center of super-quadrics in the
local coordination system. Vθ is a matrix containing relative
kinematic parameters that is computed from the directional
vectors Vd. Our model is composed of ten human body-parts
(including head, torso, left and right upper arm and lower

 

 

  

(a) (b) 

   

(c) (d)

Figure 3: Comparison results of (a), (b) with PDA
without outlier removal and (c), (d) with PDA with
outlier removal. The results of PDA are blue lines
superimposed on the clouds of points. (a), (c) two
set of 3D point clouds indicate an upper arm part
(left, cyan) and a lower arm part (right, green) with
some mix outliers. (b), (d) a 3D point cloud of right
upper arm part with some outliers.

arm, left and right upper leg and lower leg) and nine joints
(two knees, two hips, two elbows, two shoulders, and one
neck). There is a total of 24 DOFs (including two DOFs
at each joint and six free transformations from the global
coordinate system to the local coordinate system at the hip).

3. EXPERIMENTAL RESULTS
We have evaluated our proposed methodology through the

quantitative and qualitative assessments using synthetic and
real data.

3.1 Experimental settings
To test our system, we used our own synthetic DB of

20,000 different poses for training RFs. The human body
parts were recognized from a depth human body silhouette
via the trained RFs. In order to evaluate quantitative as-
sessments, we utilized synthetic depth silhouettes not from
the training DB to test with the ground-truth information
from the original 3D body model. At each estimated 3D hu-
man pose, we measured joint angles of a few joints from the
3D human body model and saved as the ground truth. Then
we derived the same joint angles from the reconstructed 3D
pose and compared them the ground truth. In our experi-
ment, we only focus on the evaluation of the four main joints
including left-right elbows and knees.

For qualitative assessment on real data, we utilized the
depth silhouettes that were captured by a depth camera
from Primesense [2]. Then, human body parts of the sil-
houettes were recognized via the trained RFs. The principal
directions of the recognized body parts were estimated by
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PDA. These directions were finally mapped on to the 3D
human body model, resulting in the estimated 3D human
body pose. The training process was run on supercomputer
system. The testing process was run on the standard desk-
top PC with Intel Pentium IV Dual-core, 2.5 GHz CPU, and
3G RAM.

3.2 Experimental results with synthetic data
We performed a quantitative evaluation using a series

of 500 depth silhouettes containing various unconstrained
movements. From those test depth silhouettes, we got the
labeled body parts using the trained RFs, applied the PDA
algorithm, estimated the joint angles, and compared the es-
timated to the ground truth joint angles. In this experiment,
we only focused evaluation on the four main joints including
left-right elbows and knees corresponding to the eight direc-
tional vectors including lower-upper left arm, lower-upper
right arm, lower-upper left leg, and lower-upper right leg.
The evaluated results of our methods are provided in Fig-
ure 4. We have computed the average reconstruction error
which is computed as

ϵθ =

∑nf

i=1 | θesti − θgrdi |
nf

(9)

where nf is the number of frames, i the frame index, θgrdi the
ground-truth angle, and θesti the estimated angle. Our quan-
titative evaluation produced the average reconstruction er-
rors which of the left elbow, right elbow, left knee, and right
knee are 5.52, 5.14, 8.86, and 10.34 degree, respectively. As
can be seen in Figure 4 and the computed average recon-
struction errors, the accuracy of estimated joint angles is
better at elbows than at knees.

3.3 Experimental results with real data
In the evaluation with real data, we asked the subject to

perform some unconstrained movements. Figure 5 shows
the obtained results of PDA showing the principal direction
as lines superimposed on the subject poses. The results of
the experiments with arm movements and leg movements
are given in Figures 6. The 2nd and the 3rd rows are results
of the 3D human poses reconstruction in the front and side
view point. With the real data, since we do not have the
ground truth joint angles, only qualitative assessments are
performed by visual inspection between the results of the
2nd, 3rd rows and RGB image at the 1st row.

4. CONCLUSIONS
A novel method to recover a correct 3D human pose from a

single depth silhouette has been proposed. The technique es-
timates the principal directional vectors from the recognized
body parts by PDA. The quantitative assessments indicate
the average reconstruction error of 7.46 degree in some key
joint angles. Moreover, our methodology runs at a speed of
15FPS on a standard PC showing that our system could be
suitable for real-time applications. Experiments of qualita-
tive evaluations also show that our system is able to perform
3D human pose estimation with real data.
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BD: (a) joint angle of left elbow, (b) joint angle of right elbow, (c) joint angle of left knee, and (d) joint angle
of right knee.
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Figure 6: Sample results of our proposed 3D human pose estimation for arm and leg movements: the 1st

row shows RGB images of four different poses, the 2nd and 3rd rows show the results of estimated 3D human
poses in the front and side views respectively.
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