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Abstract—Hadoop based MapReduce(MR) has emerged as
big data processing mechanism in terms of its data intensive
applications. In data intensive systems; analysis and visualizations
as a result of various algorithms can lead to differentiable and
comparable results. Current implementations of MR facilitates to
reuse the results of MR jobs in other MR jobs and to distribute
the cloud resources among jobs. However, very little work is
done in terms of using same data for multiple algorithms at
the same time in a single job using either shared resources or
dynamic resource allocation based on the data and scheduling of
MapReduce jobs. In this paper we propose a method to execute
multiple algorithms on same data in HDFS concurrently and to
use the same available resources by dynamically managing the
task assignment and results aggregation. Our proposed approach
reduces the execution time and supports multiple algorithms
execution in parallel. In-Map/In-Reduce shows 200% decrease
in execution time.

Keywords—Big Data, Hadoop, MapReduce, Data Intensive
Computing, HDFS.

I. INTRODUCTION

In the recent times data is increasing exponentially, re-
quiring processing and analysis, termed as Big Data [1].
It demands storage (provided by Hadoop [2]), processing
mechanism in less time and computational cost compared
to the traditional applications as MapReduce [3]. Hadoop
Distributed File System (HDFS) is developed to handle the
data on clusters of commodity hardware as storage mechanism
and MapReduce is a processing mechanism to process HDFS
data. MapReduce algorithm provides the facility to write
applications in a high level programming model and to hide the
details of working of a program on a cloud (has many clusters)
of commodity hardware. It works in two phases i.e., map and
reduce. MapReduce runs a single algorithm on distributed data
in parallel[4] as a single job for data intensive[5] applications.
Data intensive applications tend to process large data in a dis-
tributed, decoupled and low inter-node dependent environment
where data is the focus. In compute intensive applications,
extensive computation on shared data with high coupling
and message passing between individual workers takes place
e.g., image processing, weather information processing using
High Performance Computing(HPC). In an effort to combine
data intensive solution along with compute intensive solution
[6], we propose In-Map/In-Reduce concurrent job execution.
Our motivation is to execute multiple MapReduce algorithms

on same distributed data in a single MapReduce job e.g.,
multiple machine learning algorithms on same weather data. A
motivational example would be predictive analysis where the
same set of Big Data will be used to train multiple statistical
models such as LM, GLM, ARIMA and different computation
will be performed on same set of data or data split. We
provide and implement In-Map and In-Reduce parallelization
in MapReduce along with parallel data processing.

Apache open-source implementation of Google’s MapRe-
duce called Hadoop, facilitates running a single algorithm as
single job on the cluster at a time i.e. parallel data processing.
Efforts made in the big data over cloud computing and parallel
computing community focuses on Hadoop to make it able to
support parallel computation as well. The research is mainly
focused on data communication between nodes in the cloud[7],
data locality [8], job scheduling [9] and skew mitigation [10].
In job scheduling; an attempt is made to execute reduce tasks
in parallel to the map tasks when some of map tasks have
nished and some are still running. This is designed only for
single algorithm running as MapReduce job.

MapReduce is basically a parallel data processing frame-
work as it is mostly adopted by the Big Data community
and the research in the community is mostly focused on
optimization of MapReduce in its parallel data processing
mechanism[4], MapReduce performance in homogeneous and
heterogeneous [11] environments and scheduling in MapRe-
duce. It will be a step forward to extend the MapReduce
towards computation intensive systems.

In this paper, we propose methodology of parallel computa-
tion with data to make MapReduce both data and computation
intensive framework. It gives the concept of In-Map and In-
Reduce parallel processing in a single job. Hadoop is well
suited for running single algorithm as single MapReduce job
on the available data in the cluster; while our method exploits
the ability of the cloud and attempts to use available resources
by running multiple algorithms in a single MapReduce job.
We execute multiple algorithms on the same underlying data
in HDFS locality [8] (DataNode) at the same time(as shown in
Figure 1). The proposed methodology can be applied on a wide
range of algorithms (section V-A), however, for the simplicity
and easiness of understanding, we explain it using WordCount”
and ”InvertedIndex” algorithms. For example, we have two
algorithms ”WordCount” [12] and ”InvertedIndex” [13]. In a
single map task the map function will be emitting (key, value)
for each algorithm in the job (as shown in Figure 2 ) and
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Fig. 1. In-Map/In-Reduce (architecture):In this figure, each mapper has two
other map functions as ”A map and B map” representing WordCount and
InvertedIndex respectively, and reducers are customized to collect individual
mapper’s output.

the key structure of each algorithm is different. Different key
structure is used in the reduce step to collect and distinguish
the result of each algorithm.
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Fig. 2. In-Map/In-Reduce (example): In this figure, two mappers work
on the data, each mapper emits (key,val) pairs for each algorithm(Word
Count,Inverted Index) with different ’key’ structures and this mapper output
is shuffled, aggregated and final output is produced by he reducer.

The proposed methodology opens new ways of processing
in the middle steps (aggregation, shufing and sorting) and will
also help in mitigating skewed data of algorithms. In case of
different algorithms as different jobs proposed in YARN [13],
there is a resource manager that is necessary to divide the
resources and schedulers to schedule each job individually
and provide separate application manager to execute jobs
other than MapReduce. The proposed method does not require
separate schedulers, separate data and resources (data node,
task trackers, and resource managers).

The rest of the paper is arranged as follows, Section
II briey describes some of the related work in the eld of
Big Data, HDFS and MapReduce. Section III presents our
methodology by describing In-Map/In-Reduce in MapReduce
in detail. Section IV presents the results, in section V we
discuss and evaluate it, section VI concludes this paper.

II. RELATED WORK

Currently many large organizations like Google [14], Ya-
hoo [15], Oracle [16], and Facebook [17] are introducing new
tools and technologies for fast and parallel processing of Big
Data [1]. A new version of MapReduce (MR2.0 or YARN [13])
has been introduced by Apache Hadoop [2]. It has separated
scheduling and resource management and introduced a global
Resource Manager, per-application Application Master and
per-node Node Manager. In this way it facilitates to run
multiple applications alongside MapReduce.

In an effort to incorporate enterprise data into Big Data,
Oracle has recently published a white paper[18], which inte-
grates Hadoop, Oracle NoSQL and Oracle Data warehouse to
provide Big Data solutions. In database community, solutions
are provided to implement MapReduce on the structured data
such as HadoopDB [19] and SCOPE [20].

For MapReduce many solutions has been presented by
researchers for its task scheduling including LATE schedular
[11] and SAMR Schedular[9]. These schedulers present a
mechanism for task scheduling in MapReduce running in
heterogeneous environments. They have also provided parallel
execution of map jobs and reduce jobs i.e., when some of the
map jobs are still running, execution of reduce jobs are started
to collect data from mappers.

Oivos presented in [21] proposes a high-level declarative
model and its run-time. It specifies the computation performed
on a widely distributed and heterogeneous data sets. In MapRe-
duce, some data sets that needs to be re-used and processed is
performed by job chaining, while Oivos targets the data sets
that are inter-dependent and programs to monitor, compile,
and execute on these dependent data sets. In Oivos abstraction
model, instead of writing separate programs for separate data
sets, it writes programs in a single MapReduce program and
then combines their and re-use their result in the same map
function. Valvag et al. in [22] have proposed a system Cogset,
which proposes tight-coupling between distributed systems.
It introduces pre-defined communication and fault-tolerance
mechanism calling it as static routing. It integrates storage file
system with its execution environment i.e., tightly coupled.
Oivos and Cogset both does not target same, homogeneous,
and independent data sets. In-Map/In-Reduce executes differ-
ent algorithm on the same and mutually independent data sets
in a single MapReduce job.

In an attempt to introduce work-sharing across jobs in
MapReduce, MRShare has been proposed by Nykiel and
Potamias et all., [23]. MRShare enables automatic and prin-
cipled work-sharing by transforming a batch of queries into a
new batch that are executed efficiently by merging jobs into
groups and evaluating each group as single query.

The above mentioned systems lack in providing parallel
computation solution with parallel data processing. As the
importance of MapReduce for Big Data is fairly understood,
we believe that parallel execution of different algorithms in
a single MapReduce job on the same underlying distributed
data in HDFS will significantly improve the performance. Our
solution decreases the time, cost and contention in MapReduce
and it also decreases skew problem as defined and explained
in [10].



III. METHODOLOGY

This section describes the methodology of our proposed
approach, The process starts from the basic data upload step
to the reduce step. The data is uploaded to HDFS to be used by
algorithms e.g., WordCount as A and InvertedIndex as B (we
use these two algorithms because of their simplicity). Map and
Reduce phases are discussed in detail in the following sections
3.1 and 3.2 respectively.

A. In-Map/In-Reduce map function

In the map step, map function process input data in such
a way that it generates two (key, value) pairs as (KA1, VA1)
and (KB1, VB1) for A and B respectively. For i and j number
of keys, it emits (KAi, VAi) and (KBj, VBj) key-value pairs
for A and B respectively, in this way a single map function
performs work of many maps as shown in algorithm 1.

Algorithm 1 In-Map/In-Reduce Map algorithm
1: Input: data split Dpi where D is the whole data, p is

this data node local data and i the portion read for input
to generate its pair e.g. (a word in a document in word
count)

2: Output:(key, value) pair
3: procedure MAP(key, value)
4: A map(key, value)
5: B map(key, value)
6: end procedure

In Algorithm 1, we have used two functions A map
and B map; their respective definitions are given in algorithm
2:

Algorithm 2 Individual algorithm Map functions
1: Input: key value pair, and some other data algorithm

specific.
2: Output:(key, value) pair
3: procedure ALL MAP(key, value)
4: split input and construct key
5: construct value
6: emit( key, value)
7: end procedure

a) : Algorithm 2 lists steps followed in map function
for each algorithm in a job. After mappers complete, their
generated (key,value) pairs are shuffled,aggregated and parti-
tioned by the partitioner and collected by the reducers. Reduce
function is described in detail in the next section.

B. In-Map/In-Reduce reduce function

After the map’s output, based on pairs having same keys
KAi and KBi i.e., KAi along with its all values aggregated
are collected by a single reducer. The reducers collect values
having same keys for each algorithm A and B from all
mappers. The values along with unique keys are emitted as
(KAi, SUM[VA1,.... VAk]) and (KBj, List [VB1,... VBk]) for
algorithms A and B respectively as shown in algorithm 3.
In algorithm 3, we have used functions A reduce and

Algorithm 3 In-Map/In-Reduce Reduce Algorithm
1: Input: key and a list of values
2: Output:(key, value) pair
3: procedure ALL REDUCE(key, value)
4: A reduce(key, value)
5: B reduce(key, value)
6: end procedure

B reduce, these are algorithm specific reduce functions and
are given in algorithm 4:

Algorithm 4 lists the steps followed in reduce function for
each algorithm in a MapReduce job; these implementations can
be different relating to algorithms. The reducer is designed in
such a way that if it receives a key related to algorithm A, only
that part of reducer is executed and the reducer’s emit method
is customized such that the output for algorithm A and B is
stored in separate files. This way we can collect the result and
then reuse it. Values belonging to the same key are collected
by a reducer and this reducer is given in algorithm 3:

In the middle steps of the job i.e., shuffle, partition,
and compare (sort) can also be implemented to dynamically
manage the data partitioning, assigning to the reducers, and to
avoid data skew and extra network communication. This paper
scope does not cover skew mitigation, and aggregation.

C. In-Map/In-Reduce Custom Partitioner and Comparator

Besides map and reduce functions, the programmer would
need to decide and design Partitioner and Comparator func-
tions in MapReduce. In Partitioner, intermediate data is par-
titioned based on the key structure of each algorithm used
in the map function. Partitioning based on key will combine
and partition the data belonging to same algorithm together.
Comparator is implemented in such a way that each algo-
rithm’s data is forwarded to a separate reducer or set of
reducer depending on the data size. Custom partitioning helps
in reducing data skew and load balancing between reducers.
Custom comparator helps in separating the result of each
algorithm based on the reducers. Implementation of custom
Partitioner and Comparator significantly improve performance.

IV. RESULTS

We implemented two algorithms i.e., ”WordCount” and
”InvertedIndex” as separate MapReduce jobs as well as com-
bined in a single MapReduce job (one job consisting of 2

Algorithm 4 Individual algorithm reduce functions
1: Input: key and a list of values
2: Output:(key, value) pair
3: procedure ALL REDUCE(key,List)
4: sum = 0
5: docsArray = 0
6: For ( each value in List) algorithm specific comp.

sum = sum + i e.g.,for wordcount docsArray =
docsArray + ithitem e.g., for inverted index from the
above, one is used in each function

7: emit( key, sum/List)
8: end procedure



Fig. 3. comparison of MapReduce jobs in sequence and parallel execution. x-axis shows the number of nodes and y-axis shows time taken.

algorithms) as described in section 3. In separate jobs, we
run one after another immediately after the completion of
the first job (as chained jobs). In both cases, we use same
data and execute both on varied cluster sizes (number of
nodes). The data size used is more than 10GB from data-
sets in [24] and [25]. The data nodes are having 4GB RAM,
Intel CPU Core(TM) i5 3.4GHz and virtual machines on each
physical node. Both cases are tested against each other to
measure and compare their performance. Results are depicted
in Figure 3. The comparison is shown in terms of the time
taken to complete the job on different number of nodes in a
cluster. It clearly indicates that both algorithms as separate jobs
compared to parallel executions has significant difference and
its time is reduced by 200% than chained jobs.

V. DISCUSSION AND EVALUATION

In order to evaluate the performance of In-Map/In-Reduce,
we compare it with MapReduce and notice the time cost as
shown in results section. We estimate the cost complexity and
it clearly indicates that its performance is 2 times better. Cost
complexity is discussed in details below.

A. Cost Complexity

In generic MapReduce, the cost complexity [26] mainly
depends on communication (between mappers and reducers to
transfer the data) and computation costs [26]. Communication
cost comprises of total input-output(I/O) of all processes
(Elapsed communication cost counts the maximum of I/O
along any path) and computation costs measures the running
time of processes. So in MapReduce the total cost is:

Comm.cost = Msize+ n(
∑

i = 0...n(M iproc.output))+∑
j = 0...n(Rjoutput)

(1)

In equation 1, M is map process input size,n is the number of
algorithms involved in MapReduce job, Mi represents output
of each map process to be passed to reducers and Rj indicates

each reducer process output. This equation tells the total
communication cost of MapReduce algorithm and the elapsed
communication cost is:

Elapsedcomm.cost = (MLinput+MLoutut)+

(RLinput+RLoutput)
(2)

In equation 2, L is the largest MR by size. Similarly compu-
tational cost is analogous, but we measure the running time of
each process only. In generic MapReduce when job chaining is
used, each job will have to read its input from HDFS and write
back the output as shown in equation 3. A is the algorithm and
n shows the number of algorithms involved.

Input−OutputCost(I/OCost) = (
∑

i = 0...n(Ailoadinput))+

(
∑

i = 0...n(Aiwriteoutput))

(3)

However, in In-Map/In-Reduce, this function is performed only
once as the data is processed by all the algorithms in each
mapper. Some extra cost is incurred in the shuffling phase,
where each algorithm data from mapper’s output is distributed
to reducers. This is in-memory and much low cost as compared
to I/O cost in equation 3.

Comparing costs in equation 1 and 2 with our methodology,
the communication cost is reduced by (n-1)times the cost of n
sequential MR jobs because we use ML input and RL output
only once in single job for multiple algorithms. In generic
MapReduce, ML input and RL output are separate for each
algorithm running as single job in sequence or in separate jobs
using unshared resources. In case of computational cost, our
methodology is comparatively efficient because we perform the
whole map tasks, then we move towards the reduce tasks. In
case of generic MapReduce, the algorithms are separate jobs
running in sequence or using unshared resources, therefore the
comparison is a pair of largest MR process and many large MR
processes in generic MapReduce i.e., max(A map/B map +
A reduce/B reduce ) . At the end either the communication
cost dominates or the computation cost in MapReduce. In both
cases parallel MR has less cost and mainly diverted from



communication cost to computation cost which really helps
in reducing contention and network communication.

B. Applications and Tradeoffs

The proposed methodology can be used in variety of
schemes including machine learning techniques, indexing tech-
niques and multipurpose data extraction. Using this method-
ology, we can compare the results of various techniques and
choose the suitable according to the demands of applications
such as business analytics, visual analytics, and scientific data
visualization. By combining multiple algorithms into a single
MapReduce job, there are some tradeoffs that occur due to the
nature of data and algorithms.

The performance of the system depends on the data
locality, because when the map functions process the data
in their local disks, they would not need to retrieve data
from other replicas which results in decreasing the network
communication. The processing of MapReduce becomes more
compute intensive by the increase in computation of single
mapper functions and it becomes less I/O bound by read-
ing/writing the data only once for all algorithms. In In-Map/In-
Reduce, when multiple algorithms are implemented to process
the underlying data, the algorithms may need to be of the
same nature. For example, when processing some data for
clustering, we need to implement various clustering techniques
and then use the results of a technique that best describes
our problem. During the implementation of In-Map/In-Reduce,
the programmers only need to provide the implementation of
map/reduce functions and the key structure for each algorithm
which will be used for the distinction in intermediate steps.

VI. CONCLUSION

In this paper, we have proposed concurrent job execution
in MapReduce as In-Map/In-Reduce: A MapReduce frame-
work, which supports multiple algorithm execution in a single
MapReduce job on the same data in parallel. Experimental
results have shown the effective performance of In-Map/In-
Reduce. It decreases the execution time 2 times when only
two algorithm are implemented and it increases with number
of algorithms increasing and cluster size.

In-Map/In-Reduce is a part of our effort to introduce
MapReduce as computation intensive platform along with its
data intensive approach. It is a basic and initial step proposing
parallel computational strategy in MapReduce, however further
research is needed in the middle steps (aggregation, shuffling
and partitioning) to handle skewness, scheduling and the
resulting data in multi-algorithmic execution environment. The
mappers output data can be used to mitigate skewness in a
new fashion because it now involves many algorithms in a
single job. In future, we are planning on extending this idea
to improve performance in these areas and to cater the needs
of efficient resource utilization in affordable cost.
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