
Vulnerability Analysis for Credentials Management in
Web Browsers

Mahmood Ahmad1, Muhammad Idris1, Zeeshan Pervez2, Sungyoung Lee1
1 Department of Computer Engineering, Kyung Hee University

Republic of Korea
2 School of Computing, University of the West of Scotland, Paisley, PA1 2BE, UK

1{rayemahmood,idris,sylee}@oslab.khu.ac.kr,

2zeeshan.pervez@uws.ac.uk

Abstract. Provision of automation with ease in human life has been a prime
focus of computing discipline. In this paper we have focused on cloud
computing in general and interaction of home users with browser in particular.
Majority of cloud service providers offer free storage space along with
synchronization services giving comfort for keeping data consistent on various
devices. These storage reservoirs are protected with valid user credentials and
can be accessed with almost any web browser or vendor specific desktop
application. With ever increased number and usage in browser based
applications (emails, social websites, banking); the utility to remember
password is becoming inevitable for home user causing a malicious user to hack
this information with even greater motivation. We have discussed storage
mechanism for these credentials on browsers which have not been changed
quite a long especially after the inception of cloud computing. Compromise on
these credentials is not an old evidence; however, this overlooked issue has a
higher risk of security especially after a user has placed personal contents on the
cloud storage.

Keywords: Password Security, Credentials, Cloud Computing

1 Introduction

The first impression of cloud computing is all about elastic storage and
extraordinarily fast computational hardware resources which are available and
scalable as per user demand round the clock. Provision of this ready-made
infrastructure and a hub of services like IaaS, PaaS, SaaS [4],[7] by cloud service
providers (CSPs) have alleviated burden for managing privately owned equipment
and associated human resources at small and medium as well as enterprise level
organizations(SMEs). Interaction of CSP is not limited with SMEs alone, home user
is another beneficiary of this cloud. Google Drive, Dropbox, SkyDrive, Apple iCloud
are amongst free storage providers [13] where a user enjoys free storage and uploads
contents not only for secure storage but for synchronization as well. In contrast to
SMEs, the security concerns of a home user from cloud storage are not that much
rigid. Free services like storage, emails, automatic synchronization of data on all

devices (laptop, smart phone, home and office PC) are enough motivational to use
these services. Access to these storage services are protected with valid user
credentials and the same can be accessed through web browsers or vendor specific
desktop applications. From the home user's perspective, accessing cloud through
browser is similar to that of email or banking website. Security on these different web
accounts is ensured as long as login credentials are not compromised but there are
number of traps through which it can slip away [1], [24], [33]. Before we discuss the
browsers limitations, it is also very important to know the general behavior of user
with his browser that further weaken the overall defense.

The number of passwords per user were limited with email or some business
account in early days of internet. Over a period of time and with the induction of
social websites, various email accounts and banking portals, this number has been
raised to 6.5 per user in 2007 as stated by Microsoft research study [11]. Although the
exact figure is unknown but it can be well imagined that from 2007 to 2013, the
number of passwords per user must have been increased. In 2011 another empirical
study on passwords [36] revealed that majority of users still opt for password with
length less than 7 characters or select easily guessed words and very few include
special characters or Greek words in it. Sharing of same password with more than one
accounts and repetition of same password again and again is another poor practice of
moderate users [12]. Selecting sophisticated passwords and then memorizing it came
up with the idea of one Master Password [19], [17]. This idea never nourished mainly
due to single point of failure or lack of user trust in these services. Facial recognition,
iris scanning or finger printing are classified as biometric authentication [27], [29].
These are alternative ways to handle the authentication problem but as an additional
cost of equipment this idea never achieved widely accepted popularity.

With the prevailing limitations on this issue, majority of users store passwords for
different web accounts on their personal machines (Laptops and Home PCs) and at a
first look there is no harm in doing this because stored password is not the only
information which is critical; there is a lot more sensitive and personal information
resident on the same machine which includes personal photographs, office documents
and media files. Stealing few bytes of personal information from victim machine
could be an easy job for some hacker but same attempt usually do not work well when
the information size grows in gigabytes. Transferring bulk of data this way over the
internet could slow down the network speed or can affect overall system response for
other applications. This unexpected behavior of system can alarm its owner for some
basic investigation or system restart as a last resort. Besides, the user has placed fairly
a large contents of information on free cloud storage (for backup or synchronized
replication) which can be accessed with valid login credentials. In this situation the
hacking attempt is limited with key information (login credentials) alone from victim
machine. The stolen credentials are then used without being noticed as an
unauthorized user while accessing the information stored on cloud. Due to these
reasons, motivation behind harvesting these stored credentials is becoming higher in
hacking community.

The remainder of this paper is organized as follows. Section 2 describes browsers
and their storage mechanism of users' credentials. Section 3 highlights exploitation
trends. Section 4 is about related work. Testing environment is presented in Section 5.
Section 6 concludes the paper.

2 STORAGE MECHANISM OF BROWSERS CREDENTIALS

Browsers are widely opted medium for accessing the internet and over the past few
years’ induction of new browsers are increasing the total count. Depending upon the
usage share [37], [30] we have selected three popular browsers i.e. Google Chrome,
Mozilla Firefox and Internet Explorer. Popularity of any browser application depends
on its speed, look and feel, customization, plugins and various favors that can be used
on number of devices like computers and smart phones. The feature of \remember
password" in a browser is fairly a common knowledge and this password can be red
easily in-case the owner has forgotten it and want to use it on some other machine. If
the user machine is not protected with system password, physical possession of
his/her machine will help anyone to steal stored password easily. In further discussion
we will analyze the storage facility and mechanism of these passwords, their
acquisition especially without acquiring the machine physically and its re-use to
infiltrate into original user account.

Unauthorized acquisition of stored passwords is not a new practice as it can be
witnessed even before the inception of cloud computing. Compromised credentials
can help to view different web accounts but this access door now leads for cloud
storage where volume of data is much bigger. If someone has access to cloud storage
account, contents can be seen, copied or crippled very conveniently. This \someone"
which can be labeled as a \hacker" has now bigger motivation to harvest stored
credentials to try its luck whether he finds password especially for the cloud account.
The complete scenario can be seen in figure 1 where interaction of user V (victim)
with cloud storage and other web domains (including malicious or compromised
legitimate websites) is shown. The possible attack scenarios is either through social
engineering or having direct access of victim machine. Sequence of steps that are
being followed by user H (hacker) to harvest credentials of user V are given in the
section of testing environment, Section 5.

Figure 1: Abstract view of conventional internet access

The upcoming discussion on each browser is with respect to Windows-7 as an
operating system and not in the order of browser popularity or ranking.

2.1 Mozilla Firefox

Any application which is installed on Windows Operating System copies its
preferences, settings and profile folders at various locations including windows
registry. These settings are used when the application starts or during its execution.
The profile folder of Mozilla Firefox is created in the following directory.

C:\Users\(username1)\AppData\Roaming\Mozilla\Firefox
With fresh installation of Mozilla Firefox (16.0.2 for windows), size of its folder is

around 200 bytes. When the browser is launched its size grows in MBs (around 13
MB). This folder holds a detailed information on the browsing habit of a user, stored
passwords, thumbnails, frequently used websites, bookmarks, downloads etc. in
SQLite database files. SQLite is a server less DB library [31] which is used by
Firefox to store. There are various tools and plugins available [18], [32] to browse
SQLite files. We used the SQLite manager (plugin to Mozilla Firefox) [18] and
SQLite Browser application [32]. Information on user credentials is stored in
signons.sqlite along with the name of URL. At this point the only information
revealed is the name of websites for which passwords are stored because the
passwords are encrypted. Before moving on to the next step we have tested this hash

value with popular hashing functions like MD5, SHA-1, SHA-2 to confirm the
hashing algorithm used by Firefox but it implements its own algorithm to create this
cryptic storage. On further analysis these encrypted values are not of fix length and
change with every successful login.

For a particular website W, the valid credential C comprising password P and id K
of user U, we have observed and confirmed successful login (over a number of times)
with following behavior.

FirstTimelogin => L (CP,K)
RememberPassword => FirefoxHashing(CP;K)

For successive login, value of this password hash changes every time in SQLite
database and

Value (Hi (P)) 6 = Value (Hi1P;K (P)
After the value of this hash is changed, we used its previous value and updated it in
SQLite database manually, the login was still a success. With this we concluded that a
same value of password produces different cipher values and are not dependent with
any other file or registry key. The later conclusion is confirmed when we tested same
credentials (hash of user id and password) on another machine and it worked
perfectly.

2.1.1 Corollary

With the exercise described above, it can be stated that producing hash value of
password is one step towards safeguarding the user password but it cannot be
considered as a panacea. Moving complete profile folder from one machine to another
will even open the same windows and tabs of Mozilla Firefox and can reveal the all;
however, size of this profile folder is a big barrier in transporting it over the internet
with some social engineering technique. A novice user or someone who is not literate
enough to monitor this activity can be deceived by copying this stuff with some
automatic (auto-play) feature of removable media. Further work reveled that
acquisition of a file key3.db (which resides in the profile folder) and information from
three columns (formSubmitURL encryptedUsername,encryptedPassword) of
signons.sqlite table are sufficient for the compromise.

2.2 Internet Explorer

Internet explorer has its own mechanism to store passwords and as a product of
Microsoft; it can take an extra advantage of windows credentials and more complex
integrated mechanism for most secure encryption. There are tools and scripts
available [8], [9], [25], [26] not only to reveal these stored passwords but also explain
the internal ow of algorithms. These tools and probing scripts are not trivial neither
everyone can come and reveal the secret book easily as it demands through
understanding of implementation and a fair knowledge of computer architecture;
however, for a hacker or aggressive user if things are available on a click then there is
no need to be worried about the underlying Greek.

Internet Explorer stores two types of passwords for its users which are; auto
complete and HTTP Basic authentication. The first one is very common which is used
in daily emails, library account, banking or some forum website etc. In HTTP
authentication the password is required to logon some website and it is controlled by
some proxy server or router. For in-depth understanding, the reader can refer to RFC
2617 [15].

2.2.1 Password Storage for Auto Complete

A user visits a website and acknowledges the "remember password" offered by
Internet Explorer. This entry is encrypted and get stored in windows registry. The
storage section of windows registry prior to Internet explorer version 7.0 was

 HKEY.CURRENT_USER\Software\Microsoft\Protected Storage System provide

which has been changed to

HKEY.CURRENT_USER\Software\Microsoft\Internet Explorer\IntelliForms\StorageX

from version 7 onward. With fresh installation of internet explorer 9, the last
segmentation of above registry key is not created until \remember password" utility is
invoked by the user. After the segment of \StorageX" (where X is an integer value) is
created, all subsequent passwords are stored in it. Deleting these values manually
from registry will incapacitate the browser to recover and would not be able to login
with auto complete.

We set up two machines, V and H with windows 7 and Internet explorer 9. On
machine V, login credentials for few websites have been stored. Registry values
against stored passwords (which are encrypted) are then exported from Machine V to
Machine H to check if these registry values work or not. Feature of auto complete on
machine H requires URLs at first hand which are not readable from this encrypted
information. The second slice of information required to check the auto complete
feature can be extracted from the browser history (of machine V) or user surfing habit
on his domains of interest. It is assumed that now we have exact name of URLs and
the encrypted registry values. The outcome is still not a success, which implies that
there are few other missing pieces of information required to solve this jigsaw of auto
complete. Further, we tested it with same windows login credentials but it never
worked. To deal with this encrypted storage we used tools [8], [9], [25], [26] which
reveal all the stored passwords with enumeration and in plain text.

2.2.2 Password Storage for Auto Complete

This feature has been introduced with internet explorer 7 onward. The passwords
stored here are encrypted with windows cryptography function, after salting them
with the text generated from GUID [23]. Windows provide credentials management
function to deal with this type of password and uses the function "CredEnumeration".
The code snippet can be found on [8].

2.2.3 Corollary

In comparison to Mozilla Firefox, the process of deciphering Internet explorer stored
password is coupled with windows credentials and system bindings. It gives further
strength and resilience to storage mechanism of Internet explorer but these bindings
cannot withstand against small utilities [25], [9],[26] which can reveal the stored
passwords. Drive by download [24],[33], social engineering techniques or physical
access to system are few ways that can be used for this exploit.

2.3 Google Chrome

The Google Chrome; although being younger in its age has grabbed a large portion of
browser market since 2008. Few efficient claims in its architecture and operative
mode has really boosted itself amongst its peers. Unlike other browsers; each instance
(Tab) of this browser runs in its own and as a separate process. Chrome managed it by
placing each process in a sandbox where any abnormal behavior is dealt in isolation
keeping other tabs to breathe normally. If we look at its methodology for storing
passwords, it resembles with Firefox and Internet Explorer. The default installation
folder of chrome profile is on this location

 C:\Users\Username\AppData\Local\Google\Chrome\UserData\Default

Here, the complete user profile is stored in SQLite database files. Using the SQLite
add-on [32] or standard browser [18] we can look into various SQLite files. The most
important file is the login data which stores user name and password for different
websites. This file can be investigated using SQLite browser [32]; however,
passwords are encrypted and are not readable. Third party tools like ChromePassView
[25] can be used to see actual values for stored password. The process of encryption
and decryption of stored password has been secured in such a way that a user and
machine which store it is the only combination for its retrieval. Strength of this
feature has been achieved through Windows API of CryptProtectData [21]. On the
other hand, if the machine is in physical possession and all stored passwords on
Google Chrome are further protected with master password, the first attempt of
viewing stored password using Chrome feature might fail even third party tools
[25],[8] will not get any success. In this situation the feature of auto complete will still
work but password field will show nothing except big dots for passwords. At this
point, If password field is in focus with right click and option of inspect element is
selected (built-in feature of Chrome), it will open the source code just below the web
page. In this source code, changing type of password field to normal text will reveal
the password in plaintext instantly.

2.3.1 Corollary

Winning the competition in browser market has focus on the look and feel with higher
priority. Password protection scheme opted by Google Chrome has also proved itself

to survive against basic hacking attempts. Other than third party tools the built in
feature of inspect element is a simple provision to read stored passwords.

3 STORAGE MECHANISM OF BROWSERS CREDENTIALS

Computer administrator is the most privileged user of his machine having maximum
permissions to execute programs (binaries), add, update or delete files and access to
system registry. Guest users or remotely logged on users have lesser permissions and
therefore cannot execute every program especially which requires access to system
folder or manipulation with system registry (to survive system reboot). This feature of
Operating System, supports avoiding installation of malicious or unwanted programs
to some extent on user machine thus enhancing the overall security of system.
Keeping in view this limitation as a barrier; the hackers somehow manage to transport
malicious program on user (victim) machine and then wait for its execution by the
system owner to exploit the maximum privileges. Social engineering is one popular
example of this sugar coated trap. Here is a list of few techniques that can easily
entice a moderate user to execute the program while being unaware of the
consequences.

 Drive by download (Automatic execution of binaries by visiting malicious or
compromised websites) [24], [33]

 Embedded macros in Microsoft office documents [22]
 Files with double extension (sample.exe.txt). By default windows hides file

extensions, executable files can be displayed as text or image files with this
technique.

 Alternate Data streams [20],[34]
 Plug and Play feature of removable devices like USB and CDs (Auto run and

Auto play feature)
 Public documents on cloud that automatically gets synchronized on digital

devices (Laptops, PCs, smart phones etc.)
 An executable file but having folder icon, where a user definitely gets tricked

and double click it but it is too late now
 Un-patched vulnerabilities of browsers (Integer and Buffer overflow)[1], [2],

[3]

Usage of any technique is equally effective for the transportation of stored

credentials in user browser. In the next section we will present the practical
demonstration where credentials from one machine are used on another machine.

4 RELATED WORK

The methodology of storing passwords in these browsers is same for the past few
years even it has been highlighted as a security risk. The comparative analysis on
browsers has been discussed in [6], where storage mechanism of login credentials and

possible exploitation methods are discussed. The browser vulnerabilities invite attacks
especially through Cross site scripting (XSS) and Reverse cross site scripting request
(RCSR). The methodology of RCSR presented in [10] gives an overview that how
stored credentials can be transported from a victim machine. The author in [6] has
recommendations for the web developer to avoid auto-complete feature of password
field while writing the code and disable password manager for the home user
respectively. These recommendations appear as an escape solution of the problem.
For better security, chromium segregates browser kernel and browser rendering
separately as the browser kernel is responsible for managing persistent resources,
such as cookies and the password database. The motive behind the chromium
segregated architecture is to avoid execution of arbitrary code while visiting any
malicious website [5]. This modular approach works until the user interaction is
limited with chromium browser. Execution of malware by visiting dishonest websites
from other browser is still a success to trespass into the information hive made by the
chromium or any other browser.

In further discussion the author agrees that the chromium browser does not support
for XSS or Cross site request forgery (CSRF) on websites that are safe but have
vulnerabilities in them. The identified vulnerabilities of browsers has made its
vendors to release patches or even a new release. It has been observed in [16] that
Google Chrome and Mozilla Firefox releases new version after every six (06) weeks.
In [6] various vulnerabilities of browsers have been discussed and in [14] a new
design of browser has been propose but it lacks how to incapacitate usage of browser
credentials on other machines. Keeping encrypted data on user machine does not
guarantee that information is secure forever. Other than acquiring information of
stored credentials which are encrypted, information available in readable format like
bookmarks, downloads, frequently visited websites and cookies can be used to craft
behavior oriented emails in social engineering. The realization and importance of user
credentials has also been discussed in [28] but there is a lenient focus for auto-
complete and stored passwords.

5 TESTING ENVIRONMENT

Discussion on credentials compromise with respect to each browser has already been
covered. In this section we will present the attacking scenario in relevance with our
previous discussion. The testing environment has been created with two machines V
and H on two different networks and Windows 7 as an operating system. PC V will
act as victim machine whose browser profile will be used on the second PC H, which
will act as a hacking machine.

Both machines V and H have been prepared with fresh installation of Mozilla
Firefox (version 16), Internet Explorer (version 9) and Google Chrome (version 23).
Few websites that ask for login credentials have been visited only on machine 'V' so
that stored credentials can be used on H as it is. It is assumed that the victim machine
V has been injected with the exploit code that will actually transport the selected
information from browser profile and registry keys of machine V to H. The Fig-1
shows an overall attack scenario where the user 'V' has placed contents on cloud `Step

1' followed by an attack in `Step 2'. Deployment of malicious code and fetching
information from V to H falls in `Step 2' which is the acquisition of stored credentials.
Unauthorized access of cloud contents and websites is part of `Step 3'. These websites
are those ones, which have been visited on V at the start of this exercise Figure goes
here After the profile folder and registry information has been ported on 'H' in step-2;
it is only Mozilla Firefox that has been breached and the other two browsers survived
this simple attempt. Table 1 shows the initial results with this trivial methodology of
transporting the desired credentials from 'V' to 'H'. Results shown in table 1, are
effective only for Mozilla Firefox and not for the other two browsers.

Figure 2: Attacking flow

Table 1: Credentials Effectiveness on remote-machine

Browser Target
Credentials

Delivery
Mechanism

Effectiveness

Mozilla Firefox SQLite and Key
File

Email Yes

Internet
Explorer

Windows
Registry

Email No

Google Chrome Registry and
Profile

Email Yes

Mozilla Firefox SQLite and Key
File

USB Yes

Internet
Explorer

Windows
Registry

USB No

Google Chrome Registry and
Profile

USB No

In case of Internet Explorer (on machine V) values of registry keys have been

made identical but the auto complete feature never worked. To check it’s binding with
the windows

Logon credentials we changed the windows login password same on both
machines but it never worked. For Mozilla Firefox, the received profile folder
behaved the same. In next step we enhanced the exploit mechanism that initially
meant to transfer desired credentials as it is, now it can work with stored credentials
in windows registry for both IE and Chrome. It retrieves these passwords in plain
while being on V, and with some basic encryption it can transforms them into non-
readable (optional) stream while sending through email. The size of desired
information was less than 50kb and it took un-noticeable time on machine V for
retrieving, encrypting and sending back on H. Methodology opted in this step
resembles as that of[8],[9] [25].

With this step of our exercise, the login credentials worked for the selected
browsers. Mozilla Firefox has a limited resistance against trivial malicious attempt
whereas Internet Explorer and Google Chrome survived it initially.

5.1 Offline Acquisition of Credentials

Acquiring victim machine physically has no protection if it is not safeguarded with
system password. In case if the system is protected with password, still there is a way
to bypass it. This can happen if the first boot device is the removable media (USB or
CD). A small utility of UNetbootin [35] has been used with Ubuntu as an OS to boot
the system V in Linux environment. The UNetbootin and utilities like it has the ability
to convert removable media into live USB or CD to boot a system with desired OS.
After the system V has been booted with Ubuntu, we have the access for the profile
folder of Mozilla and Chrome. Acquiring registry information was tough though but
still it was of no use which helped the Internet explorer to survive this offensive
technique. The Chrome browser escaped too but only for its table storing encrypted
data for login credentials; however, other information regarding bookmarks,
downloads, cookies and history can be used for social engineering. Firefox behaved
the same and showed minimal resistance amongst three.

Table 3: Summary Results

 IE Firefox Chrome
Offer password storage Yes Yes No
Storage access with external tools Yes Yes Yes
Storage access with external tools Yes Yes Yes
Encrypted password storage Yes Yes Yes
Profile effectiveness on other machines No Yes No
Built-in password manager No Yes Yes
Encryption binding with Windows credentials Yes No Yes
Credentials storage (File system) No Yes Yes
Credentials storage (Windows registry) Yes No No
Access to credentials with other OS (Ubuntu) No Yes No

Table 2: Credentials Effectiveness on remote machine

Browser Target Credentials Delivery
mechanism

Effectiveness

Internet Explorer Windows Registry Email Yes
Google Chrome Registry and

Profile
Email Yes

Internet Explorer Windows Registry USB Yes
Google Chrome Registry and

Profile
USB Yes

5 CONCLUSION

The comparative analysis of Google Chrome, Mozilla Firefox and Internet Explorer
just highlighted the impact and volume of disaster which has been amplified when a
regular user is an active entity on cloud. Before opting for the cloud storage, the
compromise on stored passwords was a little lesser which has now been increased to
manifold with massive and organized cloud storage. The motivation to launch an
attack is escalated but the modus operandi is almost the same. The paradigm shift
with cloud computing completes with the triangular communication involving the
data owner, service provider and the end user. Demand of security has been focused
mainly on the other two and ignoring the end user. It is the time when a regular user
needs to update his general awareness while moving on to the cloud and at the same
time, the mechanism to avoid hazards associated with the stored passwords need to be
re-engineered.

6 ACKNOWLEDGEMENT

This research was supported by the MSIP (Ministry of Science, ICT & Future
Planning), Korea, under the ITRC (Information Technology Research Center) support
program supervised by the NIPA (National IT Industry Promotion Agency)" (NIPA-
2014-(H0301-14-1003) and by the Industrial Core Technology Development Program
(10049079), Develop of mining core technology exploiting personal big data) funded
by the Ministry of Trade, Industry and Energy (MOTIE, Korea)"
.

7 REFERENCES

1. Mitre. cve-2006-7228, 2006. http://cve.mitre.org/cgi
bin/cvename.cgi?name=CVE 2006-7228, 2006.

2. Mitre. cve-2007-3743, 2007. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2007-3743, 2007.

3. Mitre. cve-2008-3360, 2008. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2008-3360, 2008.

4. M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, et al. A view of cloud computing.
Communications of the ACM, 53(4):50{58, 2010.

5. A. Barth, C. Jackson, C. Reis, and T. Team. The security architecture of the
chromium browser, 2008.

6. C. Boja. Security survey of internet browsers data managers. arXiv preprint
arXiv:1112.5760, 2011.

7. R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud
computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility. Future Generation computer systems,
25(6):599{616, 2009.

8. S. Exploded. Exposoing the password secretes of internet explorer.
securityxploded.com, 2013.

9. S. Exploded. Internet explorer password revealer. http://www.ie-password
revealer.com/, 2013.

10. M. Felker. Password management concerns with ie and Firefox, 2010.
11. D. Florencio and C. Herley. A large-scale study of web password habits. In

Proceedings of the 16th international conference on World Wide Web, pages
657{666. ACM, 2007.

12. S. Gaw and E. Felten. Password management strategies for online accounts.
In Proceedings of the second symposium on Usable privacy and security,
pages 44{55. ACM, 2006.

13. E. Hamburger. Google drive vs. dropbox, skydrive, sugarsync, and others: a
cloud sync storage face-of. http://www.theverge.com, OPTurldate = 10
January, 2013 " 2012.

14. S. Hangai, T. Hamamoto, and M. Kawamoto.Perceptual color on internet
browser. In Multimedia and Expo, 2000. ICME 2000. 2000 IEEE
International Conference on, volume 1, pages 319 {322 vol.1, 2000.

15. IETF. Http authentication: Basic and digest access authentication.
http://tools.ietf.org/html/rfc2617/, 2012.

16. F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams. Dofaster releases improve
software quality? an empirical case study of mozilla firefox. In Mining
Software Repositories (MSR), 2012 9th IEEE Working Conference on,
pages 179 {188, june 2012.

17. LastPass. The last password you'll have to remeber. http://lastpass.com/,
2013.

18. Lazierthanthou. Sqlite manager (firefox add on).
https://addons.mozilla.org/en-us/firefox/ addon/sqlite-manager/, 2011.

19. H. Luo and P. Henry. A common password method for protection of multiple
accounts. In Personal, Indoor and Mobile Radio Communications, 2003.
PIMRC 2003. 14th IEEE Proceedings on, volume 3, pages 2749 { 2754
vol.3, sept. 2003.

20. A. Martini, A. Zaharis, and C. Ilioudis. Detecting and manipulating
compressed alternate data streams in a forensics investigation. In Digital
Forensics and Incident Analysis, 2008. WDFIA '08. Third International
Annual Workshop on, pages 53 {59, oct. 2008.

21. Microsoft. Cryptprotectdata function. http://msdn.microsoft.com/en-
us/library/aa380261.aspx , 2013.

22. Microsoft. Office macros. http://office.microsoft.com/en-001/support/using-
macros-to-speed-up-your-work-HA001019230.aspx , 2013.

23. M. MSDN. Credenumeratefunction. http://msdn.microsoft.com/en-
us/library/aa374794%28VS.85%29.aspx , 2013.

24. J. Narvaez, B. Endicott-Popovsky, C. Seifert, C. Aval, and D. Frincke. Drive
by-downloads. In System Sciences (HICSS), 2010 43rd Hawaii International
Conference on, pages 1 {10, jan. 2010.

25. Nirsoft. Internet explorer and chrome password view. http://www.nirsoft.net
,2013.

26. Oxid.IT. Cain and able. http://www.oxid.it/cain.html , 2011.
27. N. K. Ratha, J. H. Connell, and R. M. Bolle. Enhancing security and privacy

in biometrics-based authentication systems. IBM Systems Journal, 40(3):614
{634, 2001.

28. B. Ross, C. Jackson, N. Miyake, D. Boneh, andJ. Mitchell. Stronger
password authentication using browser extensions. In Proceedings of the
14th Usenix Security Symposium, volume 5, 2005.

29. S. Sanderson and J. Erbetta. Authentication forsecure environments based on
iris scanning technology. In Visual Biometrics (Ref.No. 2000/018), IEE
Colloquium on, pages 8/1 {8/7, 2000.

30. N. Share. Browser market share. http://marketshare.hitslink.com/browser-
market-share.aspx?qprid=0&qpcustomd=0/ , 2012.

31. SQLite. Sqlite database. http://www.sqlite.org/ ,2012.
32. SQLiteBrowser. Sqlite database browser.

http://sqlitebrowser.sourceforge.net/ , 2012.
33. B. Stone-Gross, M. Cova, C. Kruegel, and G. Vigna.Peering through the

iframe. In INFOCOM, 2011 Proceedings IEEE, pages 411 {415, april 2011.
34. Symantec. Windows ntfs alternate data streams.

http://www.symantec.com/connect/articles/windows-ntfs-alternate-data-
streams , 2013.

35. UNetbootin. Unetbootin. http://unetbootin.sourceforge.net/ , 2012.
36. A. Voyiatzis, C. Fidas, D. Serpanos, and N. Avouris. An empirical study on

the web password strength in greece. In Informatics (PCI), 2011 15th
Panhellenic Conference on, pages 212{216. IEEE, 2011.

37. W3School. Browser statistics.
http://www.w3schools.com/browsers/browsers_stats.asp , 2012.

