
O-Bin : Oblivious Binning for Encrypted Data over Cloud

Mahmood Ahmad ∗, Zeeshan Pervez †, Byeong Ho Kang,‡, Sungyoung Lee ∗
∗Department of Computer Engineering, Kyung Hee University,South Korea

†School of Computing, University of the West of Scotland, Paisley, PA1 2BE, United Kingdom
‡School of Computing and Information Systems, University of Tasmania, Australia

Email: rayemahmood ∗, zeeshan.pervez†, Yiyoon‡, Byeong.Kang‡,sylee∗@ ∗oslab.khu.ac.kr,†uws.ac.uk,

Abstract—In recent years, the data growth rate has been
observed growing at a staggering rate. Considering data
search as a primitive operation and to optimize this process
on large volume of data, various solution have been evolved
over a period of time. Other than finding the precise similar-
ity,these algorithms aim to find the approximate similarities
and arrange them into bins. Locality sensitive hashing (LSH)
is one such algorithm that discovers probable similarities
prior calculating the exact similarity thus enhance the
overall search process in high dimensional search space.
Realizing same strategy for encrypted data and that too
in public cloud introduces few challenges to be resolved
before probable similarity discovery. To address these issues
and to formalize a similar strategy like LSH, in this paper
we have formalized a technique O-Bin that is designed to
work over encrypted data in cloud. By exploiting existing
cryptographic primitives, O-Bin preserves the data privacy
during the similarity discovery for the binning process. Our
experimental evaluation for O-Bin produces results similar
to LSH for encrypted data.

Keywords-Similarity discovery; Security and Privacy;
Cloud; Binning

I. INTRODUCTION

In recent years the data growth rate is in fast gear with
its projection estimated to grow 44 times within a time
period of 11 years, 2009 − 2020 [1]. This phenomenon
of data explosion necessitates efficient data exploration
methods and techniques so that applications that are build
over large volume of data can glean insight in least amount
of time. Considering search as a primitive operation for
data exploration, certain techniques like binary trees, k-
d trees and hash tables are used for fast lookups. As a
next step and to further enhance searching mechanism, a
technique known as locality sensitive hashing (LSH) has
been proven valuable for retrieving items that are similar
to a search criterion in a high dimensional search space
[2]. This approach belongs to a novel and interesting class
of algorithms that are known as randomized algorithms.
For very large database system with high dimensions,
LSH drastically reduces the computational time at the
cost of small probability of failing to find the absolute
closet match. For given user search, LSH prepares most
probable and potential subset form entire data and organize
them into bins [3]. The data set sharing similar bin have
the high probability of similarity in between them. Using
an example shown in Figure 1 we will explain how
binning is useful for efficient search. In this example the
objects a, b, c, and d have certain attributes and using their
common attributes these objects can be placed in similar

Figure 1. Example:Finite set world space

bins. The Object a and b have similarity with respect to
their geometrical shape which we denote as shape(a,b).
Similarity other similarities that exist amongst other ob-
jects are color(a,c), toughness(c,d), and weight(d,b). If a
certain search criterion C is need to be evaluated on this
pre-processed binning then only a subset of dataset will
be searched within, instead of iterating through the whole.

With the staggering growth of data and to maximize
its utility impact, data outsourcing in public cloud is
gaining momentum. Besides data outsourcing, services
that are built over this data are also executed within cloud
infrastructure. Considering services similar to LSH, their
execution in cloud infrastructure can help cloud server in
creating bins of similar objects. However; if outsourced
data is sensitive in nature then additional requirements
need careful considerations before the binning process
start, these are

• for data privacy and security, encrypted outsourcing
is strongly recommended [4],

• the attributes of encrypted data need to be compared
in such way that it should not reveal any informa-
tion about the outsourced data i.e.,working with the
encrypted data directly,

• while working with the encrypted attributes, the bin-
ning process must resemble like LSH are close to
it.

Considering these challenges and motivated by the LSH
scheme, in this paper we have formalized a similar
approach that is aimed to optimize search processing over
encrypted data by binning similar objects probabilistically.



By exploiting the existing cryptographic primitives our
scheme O-Bin is capable of working with the encrypted
attributes directly, thus hiding the internal details of actual
data. Due to this characteristic, it is feasible to deploy
it in an untrusted domain of public cloud to leverage
its computational resources obliviously. To analyze the
performance of our model in comparison to the LSH
scheme we report our experimental evaluation that is
conducted on similar data set.The rest of the paper is
organized as follows.

Section II is about the definitions and preliminaries
for techniques that are used during the construction of O-
Bin. Assumptions and notations used for the descriptive
detail of O-Bin is given in Section III. General overview
of LSH with respect to O-Bin is given in Section IV.
System execution, construction of O-Bin in cloud server
and detailed explanation of O-Bin with real data is given
in Section V. Section VI is on Related work. The paper
concludes in Section VII.

II. DEFINITIONS

A. Homomorphic Encryption

Homomorphic encryption HE is a form of encryption
where a specific algebraic operation performed on the
plaintext is equivalent to another (possibly different) alge-
braic operation performed on the ciphertext. An encryption
scheme is said to be additive homomorphic if and only if

EH(m1)� EH(m2) = EH(m1 +m2)
where � is an operator. Pascal Paillier cryptosystem [5]
possesses the property of additive HE which is as follows.
• Key generation: Let N = pq be the RSA-modulus

and g be an integer of order αN module N2 for some
integer α. The public key is (N, g) and the private
key is λ(N) = lcm((p− 1)(q − 1)).

• Encryption: The encryption of message m ∈ ZN is
Eh(m) = gmrN mod N2 where r ∈R Z∗N

• Decryption: For ciphertext c, the message is
computed from

m = L(cλ(N) mod N2)
L(gλ(N) mod N2)

A scheme is said to be multiplicative homomorphic if
and only if

EH(m1)� EH(m2) = EH(m1 ×m2)
The Goldwasser-Micali (GM) cryptosystem is a
semantically-secure scheme based on the quadratic
residuosity problem. It has XOR homomorphic properties,
in the sense that EH(b).EH(b′) = E(b ⊕ b′) mod N
where b and b′ are bits and N is the public key. A
homomorphic encryption is said to be semantically secure
if E(H) reveals no information about m1 and m2, hence
it is computationally infeasible to distinguish between the
cases m1 = m2 and m1 6= m2 [6].

B. Private Matching

Yaos classical millionaires problem involves two mil-
lionaires who wish to know who is richer. However, they
do not want to find out inadvertently any additional in-
formation about each others wealth. More formally, given

two input values x and y, which are held as private inputs
by two parties Alice and Bob respectively. The problem
is to securely evaluate the Greater Than (GT) condition
through a predicate function f such that f(x, y) = 1 if
and only if x > y, without exposing inputs. We used
Fischlin protocol [7] for the private comparison because
it allows comparing two ciphertexts encrypted with the
GM crytosystem using the same public key. Fischlin
uses the GM-encryption scheme to construct a two-round
GT protocol. The GM encryption scheme has the XOR,
NOT and re-randomization properties. They modified the
scheme to get an AND property, which can be performed
only once. The computation cost O(n) for the server side
is very efficient. Nevertheless, the overall computation cost
for both the client and server sides are O(nlogN), where
N is the modulus. The scheme is as follows.
• Key generation: Let N = pq be the RSA-modulus

and z be a quardatic non-residue of Z∗n with Jacobi
symbol +1. The public key is (N, z) and the secret
key is (p, q)

• Encryption: For a bit b, the encryption is E(b) =
zrr2 mod N , where r ∈R Z∗N

• Decryption: For a ciphertext c, its plaintext is 1 if and
only if c is a quardatic non-residue. If c is a quadratic
residue in ZN , c is quadratic residue in both Z∗p and
Z∗q

• xor-property: E(b1)E(b2) = E(b1 ⊕ b2)
• not-property: E(b)× z = E(b⊕ 1 = E(b̄)
• re-randomization: Randomization of ciphertext c can

be done by multiplying an encryption of 0

C. The Bloom Filter

A Bloom Filter is a method for representing a set
S = s1, s2, . . . , sn of keys from a universe U , by using
a bit vector V of m = O(n) bits. It was invented by
Burton Bloom in 1970 [8]. All the bits in the vector
V are initially set to 0. The Bloom Filter uses k hash
functions, h1, h2, . . . , hk mapping keys from U to the
range 1 . . .m. For each element in s ∈ S, the bits at
positions h1(s), h2(s), . . . , hk(s) in V are set to 1. Given
an item q ∈ U , its membership is checked in S by
examining the bits at positions h1(q), h2(q), . . . , hk(q). If
one or more of the bits is equal to 0 then q is certainly
not in S. Otherwise q is considered as a member of S but
with certain false positive rate. This probability depends
upon the parameter selection adopted for the Bloom Filter,
namely m and k. After inserting n keys at random to the
array of size m the probability that a particular bit is 0 or
1 is (1 − 1

m )kn. The error probability for a bloom filter
Eb is give in equation

Eb =

(
1−

(
1− 1

m

)kn
)k

≈
(

1− e− knm
)k

(1)

III. NOTATIONS AND ASSUMPTIONS

We assume that data ownership has sufficient resources
for data encryption and attribute encryption on the relevant
index before outsourcing it on the public cloud. While



Figure 2. Finding the probable similarity using LSH binning

explaining O-Bin, we only focus on the oblivious binning
process and intentionally neglect the details for security
key construction and details for their distribution. As a
common security assumption we assume that the cloud
server is a semi-honest entity [9]. The semi honest entity
behaves honestly but try to extract additional information.
We also assume that the data instances have been declared
with their attributes. The notations used for the descriptive
detail of proposed model are given in table I.

Table I
NOTATIONS USED IN THE DESCRIPTIVE DETAIL

Notation Description
D Data to be outsourced in public cloud
d An instance of data i.e., di ∈ D
A Attribute list of d where A = {a1, a2, . . . , an}
β Bloom filter representation of d
H Family of hash functions used for bloom filter con-

struction
λ Length of bloom filter: total number of bits in βi that

are either set to zero or one
†i Total number of bit positions in βi that are set to one

i.e.,true
Es, Ds Symmetric encryption and decryption algorithms
EH , DH Homomorphic encryption and decryption algorithms
σpk , σsk Public and secret key pair for Homomorphic encryption

IV. GENERAL OVERVIEW AND SYSTEM FORMULATION

Before we present the proposed model, we start with the
bins construction using LSH on a given data set as shown
in Figure 2. In validation to our proposed solution, first
we apply LSH on this data and note the results. This input
data used for LSH is then encrypted and O-Bin results are
compared with the LSH results. The input data consist on a
finite set of data strings where each string is transformed
into attributes for its multidimensional representation in
some metric space. To explain this transformation we will
use one instance of input data as an example, ‘heartattack’.
First step in this transformation is to create its n-gram
tokens with length 2 such that for an input data having
n characters, there will be (n − 1) tokens. Hence the
tokens will be ‘he’, ‘ea’ . . ., and ‘ck’. The reason for

selecting token length=2 is to use its first and second
character as ith and jth coordinates respectively. The
token tij is then mapped onto a table shown in Figure
5. In current example scenario, first token the will be
mapped to 212 i.e., 8th row and 5th column and so on.
Similar transformation is then applied to all instances of
input data and shown in step-1 of Figure 2. We then took
six random hash functions (h1, h2, . . . , h6) and calculate
the min hash values that is shown in step-2 of Figure 2.
The min hash vectors are then divided into b bands of r
rows, where b = 3 and r = 2 in our current example.
In step-3, the LSH will create bins and identify certain
ids of input data sharing the similar bins. In Figure 2
we only show those bins having more than one items.
According to LSH, the probability of similarity existence
is shown between item id (2, 5), (1, 3, 9), (1, 9) and (5, 6).
Although LSH does not guarantee an exact answer (see
(5, 6)) but instead provides a high probability guarantee
that it will return the correct answer or one close to it.
For large data that is resident in public cloud, it can be
realized that LSH can drastically reduce the search cost by
its unique methodology. The cloud server can effectively
utilize random hash functions over outsourced data to
perform LSH operations.
With these results, now we explain how similar operation
for the construction of binning for the encrypted data take
place in the cloud.

V. SYSTEM EXECUTION: CONSTRUCTION OF BIN ON
CLOUD SERVER

Using the notations given in table I, O-Bin will ex-
ecute as follows. The data owner creates a bloom filters
β1, β2, . . . , βn for all di ∈ D, shown in Figure 3. For each
bit in bloom filter, it is then encrypted under the secret key
of homomorphic encryption σsk. Due to the probabilistic
nature of homomorphic encryption, given two encrypted
bits in a bloom filter it would be indistinguishable for
an adversary to know that originally the bits are either
set as zero or one. The data files D are encrypted with
the symmetric key and denoted as DEs . The encrypted
bloom filters and encrypted data files are now uploaded
on the cloud where cloud will find the approximate
similarity satisfying the pre-defined threshold value k.
During system initialization, cloud server will also receive
σpk for the homomorphic operations on the encrypted
bloom filter. Besides σpk, cloud server will also receive the
similarity threshold value k which is encrypted using the
Goldwasser-Micali (GM) cryptosystem [10]. For private
comparison, Fischlin protocol [7] allows comparing two
ciphertext encrypted with the GM cryptosystem using the
same public key. While discovering the probable similarity
and their placement into bins, cloud server will use GM
cryptosystem along with the Fischlin’s protocol for the
private comparison only. Prior private comparison, the
homomoprhic operations that are performed on the cloud
server are given as follows. For two bloom filters, βi and
βi+1 a bit by bit homomorphic multiplication is performed
to obtain their resultant as ∆⊗. To calculate the similarity



Figure 3. Construction of fixed length bloom filter

score ∆⊕ for βi and βi+1, each bit that belongs to ∆⊗ is
then added together according to equation 2.

∆⊕i,i+1 = ∆⊗i [0]⊕∆⊗i [1]⊕, . . . ,∆⊗i [λ] (2)

If this ∆i,i+1 ≥ k then βi and βi+1 are assigned with the
similar bin. Likewise, the cloud server will evaluate all
the entries and finalize the binning process. During this
oblivious process the only information cloud learns is the
cardinality of each bin.

A. O-Bin with real data

To build our system we use the bloom filters that
is applied on the n − grams of input data. For each
instance of input data, its n − grams are used as input
feed into the bloom filter as shown in the figure 3. The
output of this operation is a fixed length bloom filter
β of length λ, where each bit of β is set as zero or
one. The information that we use from bloom filter for
binning purpose is the number of bits that are set to one
or “true” i.e., †. By using this information we create bins
in three possible ways as shown in figure 4. First, the
bins are created according to similar number of bits set
to true. This arrangement makes a total of 8 bins where
number of true bits are shown in grey circle, Figure 4-(a).
In this arrangement only B7 with † = 21 holds more
than one data instances. This arrangement is far below in
comparison with what LSH provides. Therefore; instead
of relying on similar number of true bits, we expand
true bit comparison as † ± 2. If we look at B4 in Figure
4-(b), now there are two data instances in this bucket
instead of one. This arrangement improves the binning
candidacy but still it falls below than desirable results of
probable similarity discovery. Figure 4-(c) shows the final
and probable arrangement of data instances (shown with
respect to their ids) in each bin. In third arrangement the
proposed model creates only 5 bins and participation of
data instances in each bin is more close to what LSH
provides. In Figure 4-(c) we show the id of each bin and
id of data instance only. The explanation for constructing
such binning arrangement is as follows.

Figure 4. Creation of O-Bin

To achieve results that are more close with LSH,
we define a matching threshold value k for any two
bloom filters β1 and β2. For our current experimental
setup, we set k = 60, which means that for any βn
bloom filter to become a member of bin Bi, it must
satisfy similarity ≥ k with any of βn−1 that already
have membership in Bi i.e., βn−1 ∈ Bi. If we look
at data instance with id 1, 3, and 9 it can be observed
that they share certain characters (attributes in this
case) in common. If two data instances having bloom
filtered representation as Bi = [1, 1, 0, 1, 0, 1, 0, 1] and
Bi+1 = [1, 1, 0, 0, 0, 1, 0, 1], then according to equation
1 and with threshold similarity k ≥ 60 both will be in
similar bin.

VI. RELATED WORK

To protect the privacy of distributed sources using cryp-
tographic techniques was first applied in the area of data
mining for the construction of decision trees by Lindell
and Pinkas[11]. This work falls under the framework of
secure multiparty computation [12] to achieving “perfect”
privacy. The necessity of finding similarity between two
entities involves various methodologies. The end goal of
all similarity discover solutions is to find nearest matches
in least amount of time. The desire to achieve this goal
becomes complex when the data in volume is very large
and has sizeable number of attributes. To speed up this
discovery process, if certain pre-processing is done in
such a way that the target search space becomes a subset
of entire search space. For example the Web contains
many duplicate pages, partly because content is duplicated
across sites and partly because there is more than one
URL that points to the same content. A solution to identify
Web page duplicates makes use of shingles. Each shingle
represents a portion of a Web page and is computed by



forming a histogram of the words found within that portion
of the page. AltaVista, the first large-scale Web search
engine, used random selections (similarly to LSH) to test
the similarity of pages [13]. Like wise Shakhnarovich et al
[14] uses it for fast image retrieval as object recognition.
In music retrieval typically usually conventional hashes
and robust features are used to find musical matches. The
features can be fingerprints, i.e., representations of the
audio signal that are robust to common types of abuse that
are performed to audio before it reaches our ears [11].

To achieve this, LSH The information on the world wide
found on one web page may contain similar informaiton
on the world wide web is duplicated

VII. CONCLUSION

In this paper we have proposed an oblivious similarity
discovery model for encrypted data in cloud environment.
Other than encrypted outsourcing, the privacy is also
deemed necessary during the processing that take place
on the encrypted data. Similar to locality sensitive hashing
(LSH), our system O-Bin finds the probable similarities
between the participating data objects and assign them
with relevant bins. Considering the trend for encrypted
outsourcing and search as a primitive operation for data
exploration, O-Bin provides efficient searching mecha-
nism like LSH.

VIII. ACKNOWLEDGMENTS

This work is supported by the Industrial Core Tech-
nology Development Program (10049079 , Development
of Mining core technology exploiting personal big data)
funded by the Ministry of Trade, Industry and Energy
(MOTIE, Korea)

REFERENCES

[1] J. Gantz and D. Reinsel, “The digital universe in 2020: Big
data, bigger digital shadows, and biggest growth in the far
east,” IDC iView: IDC Analyze the Future, 2012.

[2] A. Rajaraman and J. D. Ullman, Mining of massive
datasets. Cambridge University Press, 2011.

[3] M. Slaney and M. Casey, “Locality-sensitive hashing for
finding nearest neighbors [lecture notes],” Signal Process-
ing Magazine, IEEE, vol. 25, no. 2, pp. 128–131, 2008.

[4] R. Dingledine and P. Golle, Financial Cryptography and
Data Security. Springer, 2009, vol. 5628.

[5] H.-Y. Lin and W.-G. Tzeng, “An efficient solution to the
millionaires problem based on homomorphic encryption,”
in Applied Cryptography and Network Security. Springer,
2005, pp. 456–466.

[6] P. Paillier, “Trapdooring discrete logarithms on elliptic
curves over rings,” in Advances in CryptologyASIACRYPT
2000. Springer, 2000, pp. 573–584.

[7] M. Fischlin, “A cost-effective pay-per-multiplication
comparison method for millionaires,” in Topics in
CryptologyCT-RSA 2001. Springer, 2001, pp. 457–471.

[8] B. H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Communications of the ACM, vol. 13,
no. 7, pp. 422–426, 1970.

[9] W. Jiang and C. Clifton, “A secure distributed framework
for achieving k-anonymity,” The VLDB JournalThe Inter-
national Journal on Very Large Data Bases, vol. 15, no. 4,
pp. 316–333, 2006.

[10] J. Katz and M. Yung, “Threshold cryptosystems based on
factoring,” in Advances in CryptologyASIACRYPT 2002.
Springer, 2002, pp. 192–205.

[11] P. Cano, E. Batle, T. Kalker, and J. Haitsma, “A review of
algorithms for audio fingerprinting,” in Multimedia Signal
Processing, 2002 IEEE Workshop on. IEEE, 2002, pp.
169–173.

[12] R. Canetti, “Universally composable security: A new
paradigm for cryptographic protocols,” in Foundations of
Computer Science, 2001. Proceedings. 42nd IEEE Sympo-
sium on. IEEE, 2001, pp. 136–145.

[13] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig, “Syntactic clustering of the web,” Computer
Networks and ISDN Systems, vol. 29, no. 8, pp. 1157–1166,
1997.

[14] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose
estimation with parameter-sensitive hashing,” in Computer
Vision, 2003. Proceedings. Ninth IEEE International Con-
ference on. IEEE, 2003, pp. 750–757.



Figure 5. Attribute value matrix used for LSH binning


