
ReSet: A Protocol for Private Matching

Mahmood Ahmad
Department of Computer

Engineering
Kyung Hee University, South

Korea
rayemahmood@oslab.khu.ac.kr

Byeong Ho Kang
University of Tasmania

Australia
Byeong.Kang@utas.edu.au

Sungyoung Lee
Department of Computer

Engineering
Kyung Hee University, South

Korea
sylee@oslab.khu.ac.kr

ABSTRACT
Private matching (PM) has a vast domain of applications
to get its benefit including social media, e-health and com-
merce. The core concept of PM comprises on revealing only
common values between two parties and ensuring the pri-
vacy of the remaining ones. In this paper we have proposed
a protocol ReSet, for PM that works with random values
rather than original datasets. Utilizing random values fur-
ther ensures the privacy by introducing an additional layer
in between original values and encryption or hashing tech-
nique. ReSet takes only two communications between the
communicating parties and can work with or without in-
volving services of any third party. The unique feature of
randomness minimizes the additional disclosure of informa-
tion that is exposure of similarity magnitude for values being
matched. Our experimental evaluation reveals that if pro-
tocol is executed more than once for similar set of values,
the output results will resist against pattern identification if
intercepted by a malicious user.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Information flow con-
trols

General Terms
Security and Privacy

Keywords
Private Matching; Privacy and Security; Information disclo-
sure

1. INTRODUCTION
The private computation of two datasets intersection is

a useful primitive for various applications including social
media [15],[20] business community [3] and e-health appli-
cations [8]. When this intersection is restricted to reveal
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only the common values and nothing else, Private Match-
ing (PM) plays its pivotal role. Ensuring privacy aspect of
shared information is the core idea for the PM protocol. In
general, PM protocol is a set of operations through which
two parties learn their common values without disclosing
any additional information. The solution for PM has been
introduced by Freedman et al [7] and according to its def-
inition, if two parties, Alice and Bob having set of values
A = {a1, a2...an} and B = {b1, b2...bn} respectively, then at
the end of protocol they should only learn which values they
have in common and nothing else as given in equation 1.

A ∩B =: {au|∃v, au = bv} ← PM(A,B) (1)

Since the inception of PM, it has evolved with few varia-
tions. These variations satisfies the constraints as imposed
by the communicating parties. Considering Alice and Bob
as communicating parties, these constrain may fall in one of
the following categories.

• Only Alice is interested to know either she has any
value in common with Bob or not. It is called the
asymmetric PM

• Both, Alice and Bob are interested to know about their
common value(s), it is symmetric PM

• If Alice learns the outcome of PM at first place then
she is expected to share it with Bob. To ensure honesty
on her share, services of third party may be required.

• If Eve is acting as third entity between Alice and Bob
then she can also learn about values being matched.
Using services of third party can disclose information
on matching values, that is not desired by Alice or
Bob.

Other than symmetric and asymmetric classification given
in [16], there is yet another scenario where total number
of common elements are required to be known rather exact
values match. In PM, this is known as magnitude similarity.
All these variations are aimed to protect the user confidence
that nothing beyond common value(s) will be disclosed to
either party but nonetheless the set cardinality. The first
two scenarios are susceptible to disclose set cardinality. For
example, Alice and Bob are delivering their products ‘a’ and
‘b’ in a certain metropolitan area. There are few customers
‘c’, who are using both products, ‘a’ and ‘b’. Delivery service
‘d’ of Danial is used for this purpose. To save the delivery
cost, Alice and Bob decided to send their products to ‘c’
customers as one package. For this, Alice and Bob need to



use the PM to know the list of their common customers ‘c’.
After executing the PM protocol, now they know the list of
their common customers, however; while intersecting they
need to share complete list of their customers which can
disclose the total strength of customer dealt by both Alice
and Bob.

The privacy preserving protocols are aimed to protect the
sensitive data along with sufficient deterrence against the
additional information leakage too. Besides protecting the
direct visibility of data, additional leakage of information
can be minimized with added complexity of encryption or
hashing techniques. In this paper we have proposed a pro-
tocol for PM between two parities. At the end of protocol
execution both parties will end up with a set of random val-
ues that will reflect the exact matchings. Due to this reason
the protocol is named as ReSet.

The idea is based on constructing the finite degree poly-
nomials with random roots on behalf of original values. In-
dividually, these roots are independent from original values
to be matched. For multiple iterations of matching process,
communicating parties evaluate their values with these poly-
nomials. Effect of random roots makes the ReSet outcome
dynamic every time it is used. Secondly, selecting random
roots are far below in computation than choosing encryption
and decryption process for generating different output with
similar values.

With ReSet, following contributions have been made in
the area of private matching.

• During PM, involving parties may or may not include
services of third party.

• For PM, two parties need to communicate only twice
to find out common values.

• If there are three parties P1,P2,P3 and only P1 is do-
ing PM with P2 and P3 such that all three parties
have same set of values. Then, the set of values being
matched between P1,P2 and P1,P3 will be altogether
different. This difference will resist the additional in-
formation leakage that P2 and P3 have similar values.

The rest of the paper is organized as follows.
Section 2 is about related work.Section 3 covers the main
idea and its methodology. Evaluation and experimental re-
sults are given in Section 4. Discussion with respect to pos-
sible threat model and limitations are given in Section 5.
Section 6 is about future work directions. Paper concludes
in Section 7.

2. RELATED WORK
In very initial work, Freedman et al. presented his idea on

private matching[7]. With gradual evolution on PM mecha-
nism various algorithms and techniques have been proposed
so far. These variations are mainly due to different require-
ments by parties involving in PM or it is result of fine tun-
ing to achieve least computational cost. Other than val-
ues which are found common, the residual data during or
after the PM can assist a curious user to find additional
information which is not desirable to be known otherwise.
Keeping this in view, we will present the related work which
is about PM in general and avoiding slipway of additional
information in particular. In recent years the protocol of
Private Set Intersection (PSI) [7],[14],[13],[10] and Private

Set Union (PSU) [8],[11],[12] are considered as main driv-
ing factors in the area of PM. In [4], these two approaches
have been highlighted for loosing adequate privacy on server
end. The Private Set Intersection Cardinality (PSI-CA) or
Private Set Union Cardinality (PSU-CA) [4] is for a sce-
nario where clients are only allowed to learn the magnitude
of common values rather the exact values. This approach
encourages to find out total number of matching values first
and that too without knowing them. After executing PSI-
CA or PSU-CA the involving parties can further decide ei-
ther to go for value matching protocol or not.

With PM protocol, values that are found common can lead
for record linkage problem. The linkage works with attempts
to match records stored at distinct parties (e.g., hospitals),
but which represent the same entity (e.g.,patient). Records
found at one place can be matched with record on other
place. To handel this issue two approaches have been pro-
posed which is the sanitization [16],[18] and secure multi-
party communication (SMC)[9]. Total reliance on first ap-
proach is not effective in terms of accuracy. Results acquired
from santized matching can end up in false positives. On
the other hand SMC overcomes this issue but with computa-
tional overhead. The computational cost of SMC operations
performed in [7],[19],[14] end up in O(m ∗ n) cryptographic
operations. If m = n = 100 then integration of this task will
require 108 cryptographic operations. The idea on santized
query has been upgraded to differential privacy in [5]. With
this technique, instead of sending the perturbed records af-
ter sensitization, user query is evaluated statistically. For
detailed description on differential privacy reader may refer
to [5],[6]

In [1] , Agrawal et al. proposed a model for private match-
ing under the provision of encryption function E and E ′
such that x ∈ X, E(E ′(x)) = E ′(E(x)). Matching values us-
ing this approach will reveal common elements to only one
party at first place. Now it is the discretion of that party
who has knowledge of common elements whether to share
it with other party or not. Even if sharing is done, there
is another question that either all elements are shared hon-
estly or not. Besides, using double encryption Agrawal, et
al suggested to use simple hashing mechanism to find out
the common elements between two parties. Matching com-
mon elements with hashing technique will definitely require
a common hash function at first place to be decided between
the involving parties. Besides common elements found using
hash technique, H(A) ∩H(B), a curious party can employ
a brute force attempt using same hash function to find out
those elements which are not common over a finite domain
of elements. Hashing techniques are not appropriate in PM
as they are more towards ensuring integrity of data contents.

3. MAIN IDEA
PM protocols are not limited with client server commu-

nication. Utilizing services of third entity which could be a
cloud or semi trusted third party (TTP) is another option to
consider. Using services of third entity can overcome the is-
sue where both parties need to know common values at the
same time. The technique of Oblivious Polynomial Eval-
uation (OPE) using the homomorphic encryption [17] can
assist to achieve this model as given in [7]. It utilizes the



Figure 1: ReSet Architecture

roots and coefficients of polynomial. Encrypted coefficients
are evaluated by cloud server or any TTP to find if values
hold equality or not. The output which is revealed at server
or third party gives no clue for actual value being matched,
no matter equality holds or not. Using the same principles
of polynomial we have used it in such a way that instead of
evaluating polynomial P (x) on valid roots, it will be evalu-
ated on random values. The proposed protocol has achieved
a notable performance in terms of communication overhead
and local execution time. In terms of communication, it
takes place only twice, however; computation becomes com-
plex when matching values are very high in numbers.

In existing PM protocols, encryption or hashing techniques
are applied on actual values to be matched. In ReSet, before
applying specific hashing H or encryption E techniques on
actual values we first transform original value into a poly-
nomial with random roots. Later, one of these root value
is encrypted and is shared with the other party where this
root value is independent from original value. Utilizing ran-
dom roots this way makes the protocol with dynamic out-
put every time it is used. During evaluation of system, the
same effect of randomization holds for a same value that is
matched for more than once. This feature makes the system
more resilient for an eavesdropper or offline attack that are
explained in the evaluation section.

3.1 Notations and Assumptions
The notations used in proposed protocol are given in Table

1. Values to be matched constitute a finite set V , and a
polynomial for value evaluation by each user is represented
by P (.). Coefficient identifier is represented by Ω, which is
shared by each party during the PM. Final value which will
discover either the original values being matched are same
or not is represented by Δ. we assume that distribution
of asymmetric keys have already been done securely and
matching is done on a finite and not very large number of
values

3.2 Methodology
Alice and Bob are considered as the communicating par-

ties for the brief explanation of proposed methodology. Alice
is running a fertilizer company and Bob is dealing in pes-
ticides. Alice and bob are using carriage services of Eve to
deliver their respective products in various markets of the
city. For their mutual interest, they decided to share names
of their common customers. With this sharing, fertilizers
and pesticides will be shipped as a one package reducing the
freight charges around 50%. To find out their common cus-
tomers we assume that address of each customer is unique

Table 1: Notations used in the descriptive detail
Notation Description
V = {v1, v2, .., vn} Set of values to be matched for

some finite domain
vi A particular value instance vi,

where vi ∈ V
P(.) Polynomial created by using r

and (r+vi) , where r is a ran-
dom number⊙

x Set of polynomials held with
user x∑n

i=1

{
Ωhigh

low ,Ψi

}
Set of values exchanged be-
tween users during the PM
process. First parameter Ω is
coefficient identifier which is
either low or high. Value of
second parameter Ψ depends
upon the value of Ω, such that

Ψ =

{
(r) if {Ωlow}
(r + vi) if {Ωhigh}∑n

i=1 {Δi} After receiving∑n
i=1

{
Ωhigh

low ,Ψi

}
, these

values are used to evaluate
results using all polynomial in⊙

one by one. The evaluation
results are then stored in Δ.

EA, DA Asymmetric encryption and
decryption algorithms

kpub, kpri Public and private key pair
for asymmetric encryption al-
gorithm

Figure 2: Sharing and Evaluation

and is represented in numeric format. For example a cus-
tomer address with zip code 500, block 2, street no 8 and
building no 66 will appear as 5002866. From here onward,



a particular address will be considered as a unique instance,
vi ∈ V.

Both Alice and Bob will perform similar operations to share
and find out their common customers, therefore, we will ex-
plain the set of operations performed by Alice alone. After
preparing V, Alice generates random numbers such that for
each vi ∈ V there exist one random number r. Alice then
construct the polynomials P using r and (r + vi) and save
them as

⊙
Alice. Against each polynomial P(.), Alice creates

the set of values as given in equation 2

n∑
i=1

{
Ωhigh

low ,Ψi

}
(2)

Although these value does not provide any clue for original
values, however; in reply to these values from Bob to Alice,
the eavesdropper can utilize this plain information for some
statistical attack. With this consideration, these values are
encrypted with the public key of Bob and then sent as shown
in equation 3.

Alice

∑n
i=1

{
EA

(
kpub,

(
Ω

high
low

,Ψi

))}

−−−−−−−−−−−−−−−−−−−−→ Bob (3)

Similarly Bob shares his value with Alice. The block
diagram for polynomial construction is shown in Figure 1
whereas the values that are received by each party are shown
in Figure 2, enclosed in dotted lines whereas the complete in-
formation flow is shown in Figure 3. After receiving the val-
ues they are decrypted with respective secret key as shown
in equation 4

n∑
i=1

{
DA

(
kpri,

(
Ωhigh

low ,Ψi

))}
(4)

After receiving these values from Bob, Alice then uses these
values one by one for evaluating the previously saved polyno-
mials and prepare the Δi. Each element in Δi is calculated
using the algorithm given in 11. Alice keep a copy of this
set, Δi, with her and send the encrypted copy to Bob as
shown in equation 5

Alice

∑n
i=1{EA(kpub,Δi)}−−−−−−−−−−−−−−→ Bob (5)

Bob will also send his set Δi to Alice using the same way
given in equation 5.

After receiving values through equation 5 , both Alice
and Bob will decrypt it and match it with their values. The
number of matching entries will reveal the exact address and
number of common customers to both parties. Complete
flow for information sharing that take place between Alice
and Bob is shown in figure 3

4. EVALUATION RESULTS
To evaluate the system output with values of Δ, we made

comparison with data sets having ten (10) values each for
Alice and Bob. There would be 100 values in each ΔAlice and
ΔBob. We put only 50% matching values that means, while
matching 100 values, only 5 will be same. The evaluation has

1With modification in usage, we have utilized this algorithm
from our previous work [2]

Figure 3: Information sharing and flow

Algorithm 1:

Input: Random number R,Value to be Matched V,
shared information Ψ, Higher and Lower bits
for Coefficient Ωhigh,Ωlow respectively

Output: Final evaluated Result Δ
1 R ← GenerateRandomNumber()
2 V ← V aluetobeMatched
3 //Create polynomial P (x)
4 P (x) = (X −R)(X − (R+ V))
5 //Select coefficient to share
6 if (lowercofficient) then
7 Ψ = r
8 send(ΩLow,Ψ)

9 else
10 Ψ = r + V
11 send(Ωhigh,Ψ)

12 //Receive value and coefficient marker from other party
13 receive(Ψ,Ω)
14 //evaluate P (x) on Ψ
15 eval1=P (x)← Ψ
16 if (Ωlow) then
17 eval2=P (x)← (Ψ + V)
18 else
19 eval2=P (x)← (Ψ− V)
20 Δ=eval1+eval2
21 return Δ

been performed without using any encryption to find prior
encryption values distribution and randomness especially for
multiple iterations for similar data sets. Figure 4 shows the
similar values at 5 places and shown with a small rectangle
enclosed in a square. Same set of values is used again and
outputs the results as shown in Figure 5. Although the
original value set is same for both but the evaluated results
holds different each time. This phenomenon avoids inference
of any pattern recognition for similar values over and over.
The encryption process on these values EA(Δi, kpub), further
strengthens the overall architecture.

The is a multiplicative growth trend in elements of Δ.
Figure-6 shows the growth of time in milliseconds along y-
axis. These values are generated without involving encryp-
tion process. Along x-axis we have considered same as well
as different elements count for two parties. The time to
generate 100, 000 values in Δ took around 6 seconds on a
machine with Core i3 processor running Windows-7 Enter-
prise (64bit) Operating System. With 100, 000 values we
mean that, for any two datasets V1 and V2 having m and n
number of elements such that m ∗ n = 100, 000.
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Figure 4: Access structure on encrypted data
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Figure 5: Polynomial evaluation results
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5. DISCUSSION
In this section we will talk about two threat models fol-

lowed by system limitations.

5.1 Threat Model: eavesdropping
The model has been evaluated for end to end communica-

tion between two parties. Considering Danial as an eaves-
dropper capable of intercepting the network traffic between
Alice and Bob, following information will be revealed to him.

Sno x
communicates−−−−−−−−−→ y

1 Alice

∑n
i=1

{
EA

(
kpub,

(
Ω

high
low

,Ψi

))}

−−−−−−−−−−−−−−−−−−−−→Bob

2 Bob

∑n
i=1

{
EA

(
kpub,

(
Ω

high
low

,Ψi

))}

−−−−−−−−−−−−−−−−−−−−→Alice

3 Alice

∑n
i=1{EA(kpub,Δi)}−−−−−−−−−−−−−−→Bob

4 Bob

∑n
i=1{EA(kpub,Δi)}−−−−−−−−−−−−−−→Alice

In order to find out common values, the total communica-
tion that takes place between Alice and Bob is from serial 1
to 4. In worst case scenario we assume that Danial intercept
all of it and tries to learn anything useful from it.

Without trying to break into the asymmetric keys, Da-

nial first tries to learn the magnitude of similarities between
Alice and Bob’s customers by simply observing traffic pat-
tern. Due to Asymmetric encryption, the encrypted sig-
nature from serial 1 and 4 will be different within the in-
tercepted traffic.If Danial manages to modify the original
messages and replay them in such a way that both parties
cannot decrypt them and have to execute the PM process
again, then the repeated intercepted traffic will again end
up in a unique pattern giving no useful clue to adversary.
This effect is due to the random roots and it holds even in
presence of symmetric encryption too. In both cases, if the
keys are compromised and Danial discovers the underlying
scheme that how address translation is made, still he will
end up with random values. In worst case scenario he will
only learn the magnitude of similarities and not the exact
identities

5.2 Threat Model: in presence of semi-trusted
third party

In PM, at least one of the communicating party will learn
the matching output at first. In order to reveal results to
both parties Alice and Bob have decided to use the services
of semi-trusted third party (TTP) owned by Eve. Here we
are not considering that computation for matching will also
take place by the TTP. Eve as TTP, is supposed to execute
the protocol in an honest way but for its curiosity tries to
learn additional information other than set cardinality. In
presence of TTP, resepective output of equation 3 and equa-
tion 5 by Alice and Bob will pass through and delivered by
Eve. After acquiring these values, the same limitation of
learning exact values holds for TTP as for an eavesdropper.

5.3 Limitations
The proposed model creates a layer of randomization be-

tween the original value and any encryption methodology.
The flexibility of replacing original values with random roots
makes it possible to generate different encrypted signature
for same input again and again. The cost for comparison
grows in O(n ∗ m) where n and m are numbers of values
to be matched. In ReSet, we accommodate this complexity
because values in set Δ are generated without encryption.

6. FUTURE WORK
In this paper we have proposed a methodology to find

out commonalities between two sets with finite values. For
efficient computing the idea is based on sharing of polyno-
mial random roots on behalf of original values. To avoid the
computational complexity with very large number of values
to be matched, we will optimize the proposed methodology.
Further, we will also provide a solution to perform computa-
tional task by TTP rather doing it on commodity hardware.

7. CONCLUSION
Private matching has attracted lot more attention in re-

cent years due to large number of applications and their pri-
vacy concern while exchanging information with each other.
Encryption and hashing are widely adopted standards for
PM and usually applied directly on the original values. Sim-
ilar values when underwent the hashing or encryption with
same key outputs a value that never changes for repetitive
matchings. To add randomness in these outputs, the pro-
posed methodology works efficiently yet revealing only the



common values to the communicating parties. This addi-
tional layer is least complex on computation as it works prior
to encryption or hashing.
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