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Abstract—Interactive activity recognition from the RGB
videos still remains a challenge, therefore some existing ap-
proaches paid the attention to RGB-Depth video process to avoid
problems relating to mutual occlusion and redundant human
pose and to improve accuracy of skeleton extraction. From the
single action to complex interaction activity, it is necessary an
efficient model to describe the relationship of body components
between multi-human objects. In this research, the authors
proposed a hierarchical model based on the Pachinko Allocation
Model for interaction recognition. Concretely, the joint features
comprising joint distant and joint motion are calculated from
the skeleton position and then support to topic modeling. The
probabilistic models describing the flexible relationship between
features - poselets - activities are generated by this model.
Finally, the Binary Tree of Support Vector Machine is applied
for classification. Compared with existing state-of-the-arts, the
proposed method outperforms in overall classification accuracy
(8-21% approximately) with the SBU Kinect Interaction Dataset.

I. INTRODUCTION

Although receives more attentions from computer vision
and artificial intelligence community in recent decades, human
activity recognition is still remaining a challenge issue due
to variations of appearance, mutual occlusion, multi-object
interaction, etc. Previous efforts on human action recognition
used the body component motions as input features [1], [2].
Most recent approaches concentrate the collection of low-
level features (as local spatial-temporal features) instead of the
human body representation (as skeleton) due to limitations of
2-D image processing. In recent years, because of the growth
and population of depth sensors, the accuracy of body tracking
is adequately improved [3]. However, developing from the
single action to the complex activity needs to be considered
under the interactive relationship between human objects.

Most recent studies proposed efficient human activity
recognition methods on the RGB-color videos [4]–[10], how-
ever, their limitations lie on location and separation of body
parts, especially when they are overlapped together. In [4], a
feature model using a string representation of feature points
was proposed to respect the spatio-temporal dynamics of

Fig. 1. Interactive activities: hand shaking and exchanging. The blue bounding
boxes capture the person with the same pose in different interactions, while
the red bounding boxes capture the different poses in different interactions.

complex activities. In order to measure the structural similarity
between sets of feature points, the authors in [8] designed
a novel matching algorithm for interaction recognition. An
important aspect of a novel mechanism [9] is on the concept of
co-occurring feature points of Scale Invariant Feature Trans-
form (SIFT) to describe person-person interactions. One of the
most techniques is to examine the interactive body component
relationship. In [5], the authors exploited the implicit inter-
dependencies existing at both action level and body component
level to simplify human interaction recognition. Similarly,
complex activities as the interactions between the components
of a person (intra-person) and those between the components
of different persons (inter-person) were represented by a
discriminative model [6]. In [10], the structural connectivity
between objects, human pose, and different body components
is estimated through a structure search scheme with max-
margin estimation algorithm. In the same way, the authors in
[7] proposed a discriminative model to encode the interactive
phrases describing motion relationships between interacting
people based on the latent Support Vector Machine (SVM)
formulation. Due to neglectfulness of temporal dependencies
in phrases and attributes, the proposed method thereby may
confuse different interactions.

Compared with traditional video cameras, RGB-D devices
have more advantages in handling illumination changes and



provides additional depth information which motivate and
revolutionise for the single action detection [11], [12] and
complex activity recognition [13]. Determining positions of
body joints from a single depth image [14] was represented to
forward the single human action recognition. In [13], a new
dataset of two-person interactions recorded from inexpensive
RGB-D sensor was suggested for evaluation with several
geometric relational body-component feature. The Multiple
Instance Learning (MIL) algorithm was proposed for classi-
fication based on the bag of body-component features, such as
joint, plane, and velocity features. A new descriptor involving
an application of a modified histogram of oriented gradient
(HOG) algorithm was represented in [15] for spatio-temporal
feature extraction from color and depth images. An efficient
body component model used to connect the interactive limbs
of different human objects for interaction representation was
proposed in the research [16]. The essential interactive pairs
and poselets for each interaction class were also determined to
delete redundant action information. The poselets were used
to generate the poselet dictionary following bad-of-words to
support to SVM classifier with Radial Basis Function (RBF)
kernel. The drawback of this method is the poor classification
accuracy of complex activities having a high possibility due to
similarity of pose interactions, for example with hand shaking
and exchanging interactions illustrated as in Fig. 1.

According to contribution in the research [13], the authors
in this paper calculate the spatio-temporal poselets for interac-
tive representation using the joint distance and motion features.
These poselets describe the relationships between interactive
body components of not only the same human object but also
the different participants. To overcome the problem of fea-
ture co-occurrence in the interaction representation, a flexibly
hierarchical model based on the Pachinko Allocation Model
(PAM) is proposed to exhibit the relationship between the
features - poselets - activity. Concretely, the extracted features
are organized into vectors to the codebook construction by
using the k-means clustering. For topic modeling, a proposed
model consists of four levels comprising elements which are
fully connected between upper and lower layers. Using the
Directed Acyclic Graph (DAG), PAM therefore captures not
only correlations among features, but also correlations among
poselets and activities. The authors then perform Binary Tree
of SVM algorithm for classifying interactive activities.

The rest of the paper is organized as follows: Section 2
describes the proposed method for interactive human activity
recognition. The experimental setup, result, and discussion are
presented in Section 3. The conclusion is finally stated in
Section 4.

II. THE METHODOLOGY

The proposed method consists of the following modules:
feature extraction, topic modeling, codebook construction, and
classification as shown in Fig. 2

A. Feature extraction

The input data describing the normalized skeleton posi-
tion of 15 joints per person is provided in the SBU Kinect
Interaction Dataset [13]. In order to represent interactive limb
pairs, the authors calculate the spatio-temporal joint features
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Fig. 2. The workflow of the proposed method.

represented in [13], in which the joints of two persons in
a frame, called joint distance, and the joint features of an
interactive pair in a set of frames, called joint motion, are
identified (see Fig. 3).

Joint distance: The joint distance feature is defined as
the Euclidean distance between all pairs of joints between
two persons in a frame. This parameter captures the distance
between two joints in an interaction pose and is calculated as
follows:

fd (i, j, t) =
∥

∥pxi,t − p
y
j,t

∥

∥ (1)

where
{

pxi,t, p
y
j,t

}

∈ ℜ3 are the 3D location coordinates of
any joint i and j of the human object x and y at the time
t ∈ T corresponding to the tth frame, and this is measured
for the same object (x = y) and between two different objects
(x 6= y). The joint distance features extracted from an inter-
action between two objects at the time t are organized into a
vector:

FD (t) =
[

F xd F
y
d F

x,y
d

]

(2)

where F xd = {fd (i, j, t) |i ∈ xt, j ∈ xt } and F
y
d =

{fd (i, j, t) |i ∈ yt, j ∈ yt } contain the distance between two
joints of an object x and y, respectively, while F

x,y
d =

{fd (i, j, t) |i ∈ xt, j ∈ yt } presents a set of joint distance
features that are captured between two joints between x and
y.

Joint motion: The joint motion feature is defined as the
Euclidean distance between all pairs of joints of two persons in
different frames. This feature measures the dynamic motions
of interactive limb pairs at time t− t0 and t corresponding to

(t− t0)
th

and tth frame, and determined as follows:

fm (i, j, t− t0, t) =
∥

∥pxi,t − p
y
j,t−t0

∥

∥ (3)

where t0 indicates the time length which is presented by
number of frames (t0 = 1 in this research). This feature is
measured for the same object (x = y) and for different objects
(x 6= y). Similar to the joint distance, the joint motion features
are also structured into a vector:

FM (t− t0, t) = [ F xm F ym F x,ym F y,xm ] (4)

where F xm = {fm (i, j, t− t0, t) |i ∈ xt−t0 , j ∈ xt } and F ym =
{fm (i, j, t− t0, t) |i ∈ yt−t0 , j ∈ yt } contains the distance
between two joints of an object x and y at different
times, while F x,ym = {fm (i, j, t− t0, t) |i ∈ xt−t0 , j ∈ yt }
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Fig. 3. Body-pose features extracted from skeleton position: (a) Joint distance
(b) Joint motion.

and F y,xm = {fm (i, j, t− t0, t) |i ∈ yt−t0 , j ∈ xt } presents a
set of joint motion features that are captured between two joints
between x and y at different times.

B. Codebook construction

For the codebook construction, the authors utilize the k-
means clustering algorithm based on the Euclidean distance
metric to cluster the extracted feature dataset. Concretely,
each element Fd in the distance vector FD or Fm in the
motion vector FM is considered as a codeword. In the k-
means clustering, the center of each cluster is regarded to be a
codeword. The parameter K , the number of clusters and also
the size of the codebook (the number of vocabulary words)
is set in advance. From (2) and (4), there are three and four
words which are generated for each joint distance and motion
vector. So a set of frames describing an interaction activity can
be represented by the histogram of codewords.

C. Topic modeling

In the previous section, the features describing the joint
interaction between objects in the same time and different
time are computed and mapped to codewords. Fundamentally,
they can been used for interactive action classification of a
short period, however, the long time representation needs to
be explored. Another issue is the high possibility of differ-
ent activities comprising more similarly interactive features.
This phenomenon will lead to the misclassification, especially
with the complex activities, for example as hand shaking
and exchanging as in Fig. 1. Therefore, in this section, the
authors proposed a hierarchical model based on the Pachinko
Allocation Model to capture the correlation between the inter-
active features, poselets, and activities. To represent and learn
arbitrary, nested, and possibly sparse activity correlations, this
model is constructed based on the arbitrary Directed Acyclic
Graph.

Although PAM is introduced with arbitrary DAGs, four-
level hierarchy structure, a special case [17], consisting
of one root topic, u super topics at the second level
P = {ρ1, ρ2, . . . , ρu}, v subtopics at the third level Q =
{̺1, ̺2, . . . , ̺v} and the codewords at the bottom. The code-
words are according to the features comprising the joint
distance and joint motion which were computed in the pre-
vious stage. The super topic and subtopic correspond to
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Fig. 4. Pachinko Allocation Model: (a) Hierarchical topic model (b) Graphic
model.

the interactive activities and the interactive poselets, respec-
tively. The root is associated to activities, the activities layer
are fully associated to interactive poselets, and the poselets
are fully connected to the codewords as in Fig. 4(a). The
multinomials of the root and activites are sampled for each
frame based on a single Dirichlet distribution gr (δr) and
gl (δl)|

u
l=1 corresponding to the joint distance vector and the

joint motion vector, respectively. The poselets are modeled
with multinomial distributions φ̺l |

v

k=1 and ψ̺l |
v

k=1 which
are sampled from Dirichlet distribution g (β) and g (γ). The
graphic model for four-level PAM is displayed in Fig. 4(b).
The particular notations used in PAM are summarized in the
Table. I. According this model, a frame as a document d in
the sequence of T frames D = {d1, d2, . . . , dT }, is generated
by the following process:

1) Sample a multinomial distribution θ
(d)
r from a Dirich-

let prior δ
(d)
r for frame d.

2) For each interactive activity ρl , sample a multino-

mial distribution θ
(d)
ρl from gl (δl), where θ

(d)
ρl is a

multinomial distribution over interactive poselets.
3) Sample multinomial distributions φ̺k |

v

k=1 from a
Dirichlet prior β for each poselet ̺k.

4) Sample multinomial distributions ψ̺k |
v

k=1 from a
Dirichlet prior γ for each poselet ̺k.

5) For each codeword w in the current frame d:

• Sample an interactive activity ρw,d from θ
(d)
r .

• Sample an interactive poselet ̺w,d from θ
(d)
ρw,d .

• Sample codeword w from the multinomial
φ̺w,d

and from the multinomial ψ̺w,d

Following this process, the joint probability of generating the
frame d, the interactive activity assignments ρ(d), the interac-
tive posetlet assignments ̺(d), and the multinomial distribution
θ(d) is calculated as:

P
(

d, ̺(d), ρ(d), θ(d)
∣

∣ δ, β, γ
)

= P (θr| δr)
u
∏

l=1

P
(

θ
(d)
ρl

∣

∣

∣
δl

)

∏

w

(

P
(

ρw| θ
(d)
r

)

P
(

̺w| θ
(d)
̺w

)

P (w|φ̺w , ψ̺w )
)

(5)
Integrating out θ(d) and summing over ρ(d) and ̺(d), the



marginal probability of a scene can be calculated as:

P (d| δ, β, γ) =
∫

P
(

θ
(d)
r

∣

∣

∣
δr

) u
∏

l=1

P
(

θ
(d)
ρl

∣

∣

∣
δl

)

∏

w

∑

ρw,̺w

(

P
(

ρw| θ
(d)
r

)

P
(

̺w| θ
(d)
ρw

)

P (w| φ̺w , ψ̺w )
)

dθ(d)

(6)
The probability of generating the corpus D corresponding to
the overall video is computed by:

P (D| δ, β, γ) =
∫

v
∏

k=1

(P (φ̺k |β) + P (ψ̺k | γ))
∏

d

P (d| δ, β, γ) dφdψ
(7)

The joint distribution of the corpus D and the topic assign-
ments is given by:

P (D,P ,Q |δ, β, γ ) = P (P |δ )P (Q |P , δ )

P (D |Q, β )P (D |Q, γ )
(8)

By integrating out the sampled multinomials, each term is
calculated as follows:

P (P |δ ) =
∫
∏

d

P
(

θ
(d)
r |δr

)

∏

w

P
(

ρw

∣

∣

∣
θ
(d)
r

)

dθ

P (Q |P, δ ) =
∫
∏

d

(

u
∏

l=1

P
(

θ
(d)
ρl |δl

)

∏

w

P
(

̺w

∣

∣

∣
θ
(d)
ρw

)

)

dθ

P (D |Q, β ) =
∫

v
∏

k=1

P (φ̺k |β )
∏

d

(

∏

w

P (w |φ̺w )

)

dφ

P (D |Q, γ ) =
∫

v
∏

k=1

P (ψ̺k |γ )
∏

d

(

∏

w

P (w |ψ̺w )

)

dψ

(9)

Finally, the approximate inference result of the condition
distribution which samples the super topic and sub-topic as-

signments for each codeword, is obtained by (6), where n
(d)
r

is the number of number of occurrences of the root r in the
document d; n

(d)
l is the number of occurrences of activity ρl in

the document d; n
(d)
k is the number of occurrences of poselet

̺k in d; n
(d)
lk is the number of times that poselet ̺k is sampled

from the activity ρl; n
(d)
kz is the number of occurrences of

codeword wz in the poselet ̺k. The notation −w indicates
activity assignments except word w. The hyper-parameters δ,
β, and γ can be estimated via the Gibbs sampling algorithm
which is described in [17]. The new data by tagging the joint
distance and joint motion features as codewords is generated
as the output of PAM. By merging the same codewords in
different video contents, the probability distribution is obtained
as the implicit poselet - activity - frame sequence matrix.

D. Classification

Joint distance and joint motion features are viewed as
codewords and assigned to a particular poselet and activity
models by topic modeling. The interactive poselet and activity
statistics in every frame sequence are gathered by PAM,
then their frequency is observed. Hence, every sequence can
be represented by a matrix whose length is the number of
interactive poselets and activities. To train the classifier, the
labels of vectors and matrices are stamped with their classes
manually. In this paper, the authors reused the Binary Tree
of SVM [18], or BTS for abbreviation, to solve the N-class
pattern recognition problem. Each node in the architecture (see

TABLE I. NOTATIONS USED IN THE PAM MODEL

SYMBOL DESCRIPTION

u Number of interactive activities

v Number of interactive poselets

T Number of frames

K Number of unique codeworks

gr (δr) Dirichlet distribution associated with the root

gl (δl) Dirichlet distribution associated with the lth activity

g (β) Dirichlet distribution associated with poselet for distance features

g (γ) Dirichlet distribution associated with poselet for motion featurres

θ(d)r The multinomial distribution sampled from gr (δr) for the root in frame d

θ(d)pl
The multinomial distribution sampled from gl (δl) for an activity in frame d

φ̺ The multinomial distribution sampled from g (β) for a poselet ̺
ψ̺ The multinomial distribution sampled from g (γ) for a poselet ̺
ρw,d The interactive activity ρ associated with the codework w in the frame d
̺w,d The interactive poselet ̺ associated with the codework w in the frame d
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Fig. 5. Illustration of Binary Tree of SVM for a 7-classes sample.

Fig. 5) makes binary decision using the original SVM. Based
on the recursively dividing the classes into two disjoint groups
in every node of the decision tree, the SVM classifier decides
the group of unknown sample should be assigned. The class
is determined by a clustering algorithm according to the class
membership and the interclass distance. In the training phase,
BTS has N − 1 binary classifiers in the best situation (N is
the number of classes), while it requires only log4/3

(

N+3
4

)

binary tests on average when making a decision.

III. EXPERIMENTAL RESULT

A. Experimental Setup

The experiments are performed on the SBU Kinect In-
teraction dataset [13] which comprises of 21 RGB-D video
sequence sets, total of 300 interaction videos approximately,
describing the interactive activities that are recorded by the
Microsoft Kinect Sensor: approaching, departing, pushing,
kicking, punching, object exchanging, hugging, and hand
shaking as in Fig. 6. The dataset contains RGB images and
depth maps with 640 × 480 pixels, and also 3D skeleton
position of 15 joints. It is important to note that the skeleton in
SBU are sometimes not stable on fast and complex motions,
especially facing occlusions to lead to fail tracking mission.
In the k-means clustering, the authors map joint distance and
motion features into 500 codewords as the size of codebook.
Fundamentally, as the number of codewords increases, the
constructed codebooks will represent content of interaction
videos more accurately. However,if this parameter is set too
large, the process of codebook construction will be very time
and memory consuming. In the PAM-based topic modeling, the
authors set u = 8 interactive activities and v = 50 interactive
poselets. The Dirichlet distribution over activities and posetlets



P (ρw, ̺w| D,P−w,Q−w, δ, β, γ) ∝ P (w, ρw, ̺w| D−w,P−w,Q−w, δ, β, γ)

=
P (D,P ,Q| δ, β, γ)

P (D,P
−w,Q−w| δ, β, γ)

=
n
(d)
l + δrl

n
(d)
r +

u
∑

l=1

δrl

n
(d)
lk + δlk

n
(d)
l +

v
∑

k=1

δlk

nkz + βz

nk +
K
∑

z=1
βz

nkz + γz

nk +
K
∑

z=1
γz

(6)

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 6. Visualization of the SBU Kinect Interaction dataset: (a) Approaching, (b) Departing, (c) Kicking, (d) Pushing, (e) Hand shaking, (f) Hugging, (g)
Exchanging, (h) Punching.
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Fig. 7. Confusion matrices of different body-pose features: (a) Raw data, (b) Joint distance, (c) Joint motion, (d) Joint features. The average classification rates
are 69.0%, 82.5%, 89.3%, 90.3%, respectively.

is produced with parameter 0.01. The Gibbs sampling process
is performed with 1000 burn-in iterations and then 20 samples
are drawn in the following 250 iterations. For BTS classifier,
the authors utilizes LibSVM [19] with RBF kernel to solve the
binary classification problem. The evaluation is performed by
7-fold cross validation.

B. Result and Discussion

In the experiments, the authors investigate the influence
of feature on the classification accuracy rate. Fig. 7 presents
the confusion matrices of eight complex interactive activities
in the use of different feature types such as the raw data (as
skeleton position), joint distance, joint motion, and combined
joint feature. The result shows the combined joint feature result
in higher classification rate than others, 8% and 21% compared

with the joint distance result and raw data approximately, be-
cause it describes the relationship between body components of
two interactive persons in the spatial and temporal dimension.
From the result in Fig. 7(d), approaching is mostly confused
with departing since some interactive poselets of approaching
have been existed in departing, such as standing. The hand
shaking has the most confusion with exchanging in classifica-
tion due to the appearance of arm stretching poselet in their
interactive activity models. The similar phenomenon occurs
with punching and pushing due to the same reason. Specially,
hugging has the confusion with the most of other activities,
such as approaching for beginning period and departing for
the ending period in the whole of activity.

The authors further compare the proposed method with
existing methods, such as Yun et al. [13] and Ji et al. [16],
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Fig. 8. Classification accuracy comparison of the proposed method with Yun
et al. [13], Ji et al. [16], and LDA model [20]. The average classification rates
are 90.3%, 80.3%, 86.9%, and 86.3%, respectively.

especially Latent Dirichlet Allocation [20], a well-known gen-
erative model. In this experiment, LDA is used for modeling
topic likes PAM. The result comparison is reported in Fig.
8. The proposed method presents the higher accuracy rate in
average in the competition with published methods. Compared
with LDA, a hierarchical model based on PAM technique
takes full correlations between features, interactive posetlets
to support to the interactive activities.

IV. CONCLUSIONS

In this work, we proposed a hierarchical model for in-
teractive activity recognition. The combined joint feature of
joint distance and joint motion are extracted from the skeleton
position which is provided from the RGB-D sensor devices.
The sparse features are modeled by the 4-layer structural model
to automatically generate the interactive poselet and activity
model. Due to capturing not only the correlations among
features but also the correlations among poselets and activities,
the model provides more expressive power to support compli-
cated structures. Compared with the state-of-art methods, the
proposed method outperforms in the classification accuracy.
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