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Abstract—An efficient foreground detection algorithm is pre-
sented in this work to be robust against consecutively illuminance
changes and noise, and adaptive with dynamic speeds of motion
in the background. The scene background is firstly modeled by
a novel algorithm, namely Neighbor-based Intensity Correction,
which identifies and modifies motion pixels extracted from the
difference of the background and the current frame. Concretely
the first frame is assumed as an initial background to be updated
at each new coming frame based on the mechanism of the
standard deviation value comparison. Two pixel windows used
for standard deviation calculation are generated surrounding a
corresponding motion pixel from the background and the current
frame. The steadiness of the current background at the pixel-level
is measured by a constantly updating factor to decide the usage
of the algorithm or not. In the next stage, the foreground of the
current frame are detected by the background subtraction scheme
with an optimal Otsu threshold. This method is evaluated on
various well-known datasets in the object detection and tracking
area and then compared with recent approaches via some
common quantitative measurements. From experimental results,
the proposed method achieves the better results (approximately
5−20%) in term of the foreground detection accuracy.

I. INTRODUCTION

Despite the take-up of the use of background subtraction
technique in visual surveillance systems, this approach presents
some crucial issues including the performance in term of
computational cost and accuracy of the background estimation.
In the background subtraction techniques, an observed image
is compared with an estimated background image which does
not contain objects and can be achieved by the background
modeling algorithm. This comparison process separates the
image into two sets of pixels: the foreground contains the
object area with 1-bit presentation and the background is
a complementary set with 0-bit presentation. Fundamentally
the background is defined as a reference frame with pixel
values visible most of the time. Although existing models are
capable to enhance the accuracy by using more frames for
estimation, they are ineffective for most practical situations.
The limitations in accuracy and the important role in the
foreground detection motivated the authors to discuss issues
related to the background estimation.

A simple scheme to model the background of a scene is use
of the statistical approach [1], [2]. The limitation of statistical
methods can wrongly engage the foreground objects into the
background in the case of non-motion objects remaining for
a long time. Gaussian Mixture Models (GMM), the most
commonly used technique for the background estimation, is
firstly introduced by Stauffer et al. [3]. In this technique,
each pixel value is estimated using the separated Gaussian
mixture and continuously learned by an online approximation.
Several improved versions [4]–[9] have been proposed as the
main contribution in the object detection method using the
background subtraction technique. For example, Zivkovic [4]
considered an improved adaptive GMM, in which parameters
and components of the mixture model are constantly chosen
for each adaptive pixel. Improvement of the convergence rate
without comprising model stability, presented by Lee et al. [5],
is another development of GMM. A recent method, suggested
by Elqursh et al. [7], describes tracking content in the low-
dimensional space and then synthesizes by GMM at each
coming frame. In order to eliminate the illumination change
and noise in intelligent video-based surveillance systems, a
novel GMM-based solution was proposed by Li et al. [8].
The approach has three key contents: an explicit spectral
reflection model analysis, an online expectation-maximization
algorithm, and a two-stage foreground detection algorithm.
Followed by probabilistic regularisation, a method based on
Dirichlet process GMM [9] was proposed to estimate per-pixel
background distributions.

Although GMM-based improvements have been proposed
to grow upon the detection performance in difficult scenes,
they still have general limitations, such as fail detection in
high speed movement and parameter estimation issue. To
avoid the mission of finding an appropriate shape for the
probabilistic model, researchers pay their attention to nonpara-
metric approaches for the background modeling. The real-time
algorithms in [10] quantizes the background pixel values into
codebooks that describe a compressed form of background
model for a number of frames. Although obtaining the high
performance in the real time environments, the drawback of
codebook approaches comprises the long period of time to



Fig. 1. The workflow of the background estimation using the NIC algorithm.

construct the model and also the high memory use to store
codewords. Another highly used nonparametric approach in
the background subtraction is the Kernel Density Estimation
(KDE) [11]. This technique estimates the probability density
function with the histogram to redefine the values of current
background pixels. Liu et al. [12] presented a hybrid model,
integrated by KDE and GMM, to construct the probability
density function of the background and moving object model.
Although KDE-based methods can provide fast responses to
the high speed movement scenes, handling concomitant events
at various speeds of this approach is restricted due to the
first-in first-out manner. In recent years, a background model-
ing technique, namely Visual Background Extraction (ViBE),
proposed by Barnich [13], which determines whether a pixel
belongs to the background by randomly comparing its intensity
with neighborhoods. Although ViBE can provides satisfactory
detection results when compared with existing approaches, it
has the problematic issue with harsh conditions such as scenes
with darker background, shadows, and frequent background
change. Standing on the aspect of minimizing the memory
requirement, a dual-layer background model, one for low
adaptation speed with the long-term background and another
for high adaptation speed with the short-term background, was
presented in research of Gruenwedel et al. [14]. The Radial
Basis Function (RBF) through artificial neural networks was
described in [15] as an unsupervised learning process for multi-
background generation.

In this paper, the authors proposed a novel method for
foreground detection based on the background subtraction
scheme, in which the initial background is assumed to the first
frame and consecutively updated at each new coming frame. In
the background estimation stage, the motion pixels extracted
from the difference frame are adjusted to background truth
intensity based on considering the intensity patterns of two
windows from the background and the current frame. The rule
for correction is developed through the comparison of two
standard deviation values. The updated background is then
used to detect and segment the foreground with an optimal
threshold determined from the Otsu method.

II. NEIGHBOR-BASED INTENSITY CORRECTION (NIC)
FOR FOREGROUND DETECTION

A. Neighbor-based Intensity Correction for Background Esti-
mation

In this study, the background is consecutively modelled
and updated from motion information of the current frame

during the foreground extraction process. The workflow of the
proposed algorithm is concretely represented in Fig. 1 with the
input as the frame sequence and the output is the estimated
background. As the prior knowledge, the first frame from the
input video sequence is assumed as the initial background:

B1 (x, y) = F1 (x, y) (1)

where B1 (x, y) and F1 (x, y) are the intensity values of a
pixel at the coordinate (x, y) with x ≤ P, y ≤ Q, in the
initial background and the first frame, where P and Q are the
horizontal and vertical size of the input frame.

For the ith coming frame (∀i ≥ 2), the background image
Bi used for the background subtraction will be estimated from
Bi−1. In the first step, the difference between the current
background and the current frame, denoted Di, is calculated
through the following equation:

Di (x, y) = |Fi (x, y)−Bi−1 (x, y)| ; ∀i ≥ 2 (2)

Before extracting the difference image, the background and
the current frame are necessarily converted from the color to
grayscale image.

The difference image Di contains information about the
moving objects and noise, therefore, Di needs to be segmented
into the background and moving object areas by constant
thresholding:

Di (x, y) =

{

1 ; ∀Di (x, y) ≥ τ
0 ; ∀Di (x, y) < τ

(3)

where τ is the constant value. The binary image Di has 0-
bit pixels representing the non-motion areas and 1-bit pixels
representing the motion areas. In principle, the moving objects
have greater difference when compared with the light change
or shadow artifact. If using a high value of τ , the noise is
eliminated as well, but some motion pixels can be unexpect-
edly misidentified. In contrast, the noise pixels are sometimes
recognized as the motion pixels in the case of a small value of
τ . Therefore, it can be seen that parameter τ has an influence
on the results of Di and needs to be carefully selected through
experimental evaluations hereafter.

In the proposed algorithm, the steadiness of each pixel, de-
noted S (x, y), is suggested to calculate the number of intensity
changing times and updated at each coming frame. If value of a
pixel is changed in two consecutive frames, it is possible to say
that this pixel is less steady than non-change intensity pixels.
The steady factor is utilized to evaluate the robustness of
the current estimated background. Concretely, the background



will become close to the true background after a number of
frames, hence the estimation process may be ignored and the
current background is maintained for foreground extraction.
The steadiness of each pixel is computed and accumulated in
a sequence of frames by the following equation:

Si (x, y) =

{

Si−1 (x, y)− 1 ; ∀Di (x, y) = 1
Si−1 (x, y) + 1 ; ∀Di (x, y) = 0

(4)

where Si is the steady matrix at the ith frame. It is initialized
with zero value, i.e. S1 (x, y) = 0, and has the same size with
the input frames. It can be seen that the steady value of a
non-motion pixel is greater than the value of a motion pixel in
accumulating frame by frame. For instance, an arbitrary pixel
p is detected as the motion pixel in t1 frames, while as the
non-motion pixel in t2 frames by (3) after T = t1+ t2 frames.
Calculated by (4), the steady value ST (xp, yp) = (−1) t1 +
(1) t2 is negative if t1 > t2, and positive if t1 < t2.

The intensity correction algorithm is applied or not for the
current background based on considering the steady matrix S.
Concretely, if the minimal value of steady factor is greater than
the steady threshold, denoted δ > 0, i.e. min

(x,y)
(Si (x, y)) ≥ δ,

the intensity modification is ignored since the current back-
ground is provisionally robust. The current background is
therefore maintained for consideration of the next frame, i.e.
Bi = Bi−1 for the (i+ 1)th coming frame, and then directly
support to the foreground extraction stage. In the opposite case,
min
(x,y)

(Si (x, y)) < δ, the intensity modification is implemented

by the NIC algorithm on the current background. This process
is briefed as follows:

Implement NIC ; if min
(x,y)

(Si (x, y)) < δ (i)

None ; if min
(x,y)

(Si (x, y)) ≥ δ (i)
(5)

Through the steady factor of each pixel, it is capable to
assess the robustness of the current estimated background. Typ-
ically, the scene consisting of more movements, represented
through the object density, requires more frames to converge to
the background truth since the pixel intensities are successively
changed. Therefore, the steady threshold δ should be set to a
great value for the dense scenes and a small value for the sparse
scenes. However, to be capable in the dynamic environments,
the value of δ needs to be automatically identified based on
the moving object area. In this work, the authors describe
the relationship between the steady threshold and the object
density by a monotonically increasing function:

δ (i) = 10−log
2
(1−r) ; 0 ≤ r < 1 (6)

where δ (i) presents the steady threshold at the ith frame, r
is the ratio of number of foreground pixel over the total of

pixels, i.e. r = num (Di (x, y) = 1)/PQ according to (3).

To select pixels in the motion set Di (x, y) = 1 for the
NIC algorithm, the authors additionally consider the condi-
tion of steady factor, concretely, with motion pixels carrying
negative steady value. Re-identification of candidate pixels will
reduce the computation cost for inappropriate points generated
from the sudden light change. The pixels are filtered by two
conditions:

Pi = {(x, y) | [Di (x, y) = 1] ∩ [Si (x, y) < 0]} (7)

where Pi is a set of filtered pixels.

The intensity correction algorithm is executed for pixels
in the set Pi. The main idea of the algorithm is illustrated
in Fig. 2, in which the motions are simply described. A first
case for the single-pixel shifting is represented in the first
row consisting of the background image in Fig. 2(a) and the
current frame in Fig. 2(b). The pixels belong to the set P
are shown in Fig. 2(c). In this step, eight pixels in the set
P need to be modified to the correct value, concretely, four
pixels on the left side should be adjusted to the values of
the corresponding pixels in the current frame and four pixels
on the right side should be adjusted to the background pixel
value. Accordingly, two windows are constructed from the
background image and the current frame surrounding a filtered
pixel, denoted WB

(x,y) and WF
(x,y), respectively. For instance

with the pixel p1 in Fig. 2(c), two windows are identified
in Fig. 2(d) and (e). The intensity patterns of two windows
are different, i.e. the ratio between the number of motion and
non-motion pixels are dissimilar. This difference is exploited
for correction, consequently, the standard deviation values of
samples in two sets (known as pixels in the windows) are
calculated. A small value indicates that the pixel values tend
to be closer to the average while a greater value points out
that the values of pixels are dispersedly spread.

Fundamentally, the standard deviation σ of a square win-
dow is generally calculated by the following equation:

σ =

√

√

√

√

1

N

n
∑

p=1

n
∑

q=1

(I (p, q)− µ)
2

(8)

where n is the size of a square window and N = n2 is the
number of pixels. The mean of intensity µ of the window is
determined from the pixel intensity I (p, q) in a sample image
I by:

µ =
1

N

n
∑

p=1

n
∑

q=1

I (p, q) (9)

For each pixel in Pi, two standard deviation values, denoted
σB
(x,y)) and σF

(x,y), are calculated from two windows of the

current background and the current frame. The rule for correc-
tion algorithm is employed based on the result of comparison
process between two standard deviation values as follows:

Bi (x, y) =















Bi−1 (x, y) ; ∀ (x, y) /∈ Pi

Bi−1 (x, y) ; ∀ (x, y) ∈ Pi

∣

∣

∣
σF
(x,y) ≥ σB

(x,y)

Fi (x, y) ; ∀ (x, y) ∈ Pi

∣

∣

∣
σF
(x,y) < σB

(x,y)

(10)
where Bi is the estimated background image at the ith frame.

In the window construction, the size of (n× n) can be
adjusted based on the speed of object movement. To investigate
the influence of window size on the result of intensity correc-
tion rule, some particular values have been assumed for several
cases. Let denote n0 and n1 are the number of non-motion
and motion pixels with the intensity g0 and g1, respectively.
So there are (n0 + n1) pixels contained in the window. The
mean of pixel values is calculated by (8) is:

µ =
g0n0 + g1n1

n0 + n1
(11)
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Fig. 2. An illustration of NIC operation in different cases of moving objects:
the single-pixel shifting (first and second row) and the multi-pixel shifting
(third row). From the left to right: the background image, the current frame,
the difference image, the background and current frame with (3× 3) and
(5× 5) windows captured surrounding a motion pixel.

The standard deviation can be derived under the variant
developed from (7):

σ =

√

1

n0 + n1

[

n0(g0 − µ)
2
+ n1(g1 − µ)

2
]

=

√
n0n1

n0 + n1
|g0 − g1|

(12)

Through (12) for the standard deviation calculation, the term
|g0 − g1| and (n0 + n1) are constant components, so the result
is decided by the term

√
n0n1, i.e. the standard deviation value

depends on the number of motion and non-motion pixels.
Let us consider the first case represented in the first row
of Fig. 2 with the window size of (3× 3). The window
WB

p1
captured from the current background contains five non-

motion pixels and four motion pixels in Fig. 2(d), while seven
non-motion pixels and two motion pixels are covered by the
window WF

p1
captured from the current frame in Fig. 2(e).

Due to σF
(x,y)

(

=
√
2× 7

)

< σB
(x,y)

(

=
√
4× 5

)

, the p1-pixel

intensity is modified from g1 to g0 by referring (10).

Let us investigate the next example shown in the second
row of Fig. 2, the problem occurs when the number of motion
and non-motion pixels in two (3× 3) windows, denoted by
the solid line boudary, established at the p2-pixel are re-
spectively antithetic. This lead to the erroneous background
correction, i.e. p2 will be preserved by its intensity instead
of modifying from g1 to g0. This problem can be overcome
if the window size is changed. Particularly in this example,
the size is modified from (3× 3) to (5× 5), denoted by the
hashed line boundary. In the third case, the multi-pixel shifting
motion which usually occurred in the practice environment is
illustrated in Fig. 2(m). The intensity modification for p3 is
incorrect if uses the (3× 3) window. Similar to the second
case, this drawback is solved if the window size is changed
to (5× 5). The terms of

√
n0n1 are re-calculated to bring the

correct modification. Through above examples, the window
size effects to the quality of the estimated background via
computation of the standard deviation. Some experimental
evaluations hereafter prove an influence of the window size
on performance in term of background estimation accuracy.

After the intensity correction process with NIC algorithm,
the estimated background is then entered to the foreground
extraction as an input and stored to continuously process in
the (i+ 1)thframe.

B. Foreground Extraction using Background Subtraction
Scheme

In this stage, the foreground is detected based on the
background subtraction scheme with an adaptive threshold.
The difference is extracted from the current frame Fi and the
estimated background image Bi by re-using (2):

D∗

i (x, y) = |Fi (x, y)−Bi (x, y)| ; ∀i ≥ 2 (13)

The foreground is then segmented based on the difference
image D∗

i by an optimum value identified from the Otsu
method [16]. The Otsu method is fundamentally formulated to
perform clustering-based image thresholding for segmentation,
in which two pixel classes (foreground pixels and background
pixels) are assumed to be sufficiently distinguishable. As the
principle concept, the Otsu method is to calculate the optimal
threshold to separate an image into the background area,
denoted G0, and the foreground area, denote G1. Through the
minimization of the intra-class variance (the variance within
the class), the threshold can reduce the error in classification.
The threshold is exhaustively sought as an intensity based on
the weighted sum of variance of two classes:

σ2
ω (g) = ωG0

(g)σ2
G0

(g) + ωG1
(g)σ2

G1
(g) (14)

where ωG0
(g) and ωG0

(g) are the class probabilities at the
intensity g. Corresponding two pixel classes, σ2

G0
and σ2

G1

are the individual class variances. The formulas for element
calculation are defined in [16]. The threshold with minimum
of weighted sum of variance is defined as:

τopt = argmin
g

(

σ2
ω (g)

)

(15)

The thresholding process is employed similar to (3) except
replacing τ by τopt :

D∗

i (x, y) =

{

1 ; ∀D∗

i (x, y) ≥ τopt
0 ; ∀D∗

i (x, y) < τopt
(16)

The foreground sometimes consists of disconnected edges
due to the drastic luminance change in dynamic scenes. In
order to fuse narrow breaks and long thin gulfs, eliminate
small holes, and fill gaps in the contour, some morphological
operations [16] may be used during the post-processing.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setup

Some parameters in the NIC algorithm need to be set up
as default values, which comprises τ = 20 of the constant
threshold and (5× 5) of the window size. All of the experi-
ments are performed on the desktop PC operating Windows 7
with a 2.67 GHz Intel Core i5 CPU and 4GB RAM. MATLAB
R2013a was the software for simulation.

In this paper, the foreground detection method is evaluated
on several video sequences which are selected from public
datasets consisting of the PETS 2009 [17] and PETS 2014 [18].
Video sequences including indoor and outdoor scene which
represent typical situations in the video surveillance system
and widely used in the object detection and tracking domain.



B. Evaluation Metrics

The proposed method is performed and compared with
state-of-the-art methods in the performance of foreground
detection. The accuracy analysis is undertaken with some
quantitative measurements including Recall, Precision, F1,
and Similarity metric [19]. All metric values range from 0
to 1, with higher value pointing out the higher accuracy.

C. Object Detection Performance

Original Ground truth NIC I-GMM ViBE K-EM
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Fig. 3. Foreground detection results in visualization of of the proposed
method and three state-of-the-art methods. Top to bottom in row: PETS09 1
(795 frames), PETS09 2 (795 frames), PETS09 3 (795 frames), PETS14 1
(1413 frames), PETS14 2 (1414 frames), and PETS14 3 (890 frames). Left
to right in column: Original frame, Ground truth, NIC foreground, I-GMM
foreground, ViBE foreground, and K-EM foreground.

TABLE I. QUANTITATIVE METRICS COMPARISON BETWEEN THE

PROPOSED METHOD AND THE STATE-OF-THE-ART METHODS.

Method
PETS09 1 PETS09 2

Recall Precision F1 Similarity Recall Precision F1 Similarity

NIC 0.947 0.953 0.950 0.905 0.871 0.917 0.894 0.808

I-GMM 0.981 0.644 0.778 0.636 0.893 0.773 0.829 0.707

ViBE 0.913 0.956 0.934 0.876 0.797 0.870 0.832 0.712

K-EM 0.912 0.917 0.915 0.843 0.865 0.842 0.853 0.744

Method
PETS09 3 PETS14 1

Recall Precision F1 Similarity Recall Precision F1 Similarity

NIC 0.934 0.880 0.906 0.828 0.945 0.946 0.945 0.896

I-GMM 0.936 0.812 0.870 0.769 0.852 0.745 0.795 0.660

ViBE 0.943 0.956 0.950 0.904 0.947 0.917 0.932 0.872

K-EM 0.921 0.943 0.932 0.873 0.833 0.826 0.829 0.708

Method
PETS14 2 PETS14 3

Recall Precision F1 Similarity Recall Precision F1 Similarity

NIC 0.956 0.614 0.748 0.597 0.895 0.796 0.842 0.728

I-GMM 0.675 0.417 0.515 0.347 0.580 0.535 0.557 0.386

ViBE 0.778 0.632 0.698 0.536 0.914 0.750 0.824 0.700

K-EM 0.579 0.656 0.615 0.444 0.895 0.756 0.845 0.731

The object segmentation results of three PETS 2009 se-
quences (denoted as PETS09 1, 2, and 3) are represented in
the first three rows of Fig. 3. Although objects in sequences
are successfully detected, the accuracies of them are different
due to some objective reasons and the nature of background
subtraction technique. For example, the motions of ribbon (in
PETS09 1 and 4) due to the wind negatively affect to the
accuracy. The object shape is sometimes wrongly segmented
because of the intensity analogy between the background and
the object pixel (in PETS09 4). Another objective challenge is

further listed here is the overall chroma when the videos are
captured in different parts of the day. Three sequences from
PETS 2014 (denoted as PETS14 1, 2, and 3) also explain the
walking activity with medium crowd in a vehicle parking area.
The segmented foregrounds corresponding to three sequences
are shown in last three rows of Fig. 3. A problem found in
these videos is the perspective projection, in which the objects
are smaller in their distance from the observer increases.
Therefore, it is difficult to detect and segment objects along
so far the line of sight. Furthermore, the foreground quality
is also degraded by constantly unexpected motions of plants
in the scene. The system in some cases can be mistaken
whenever objects are considered as noise and removed out
of a foreground.

The Recall, Precision, F1, and Similarity results cor-
responding to considered sequences are reported in Table. I.
The evaluation metrics are calculated thanks to the ground truth
with the binary classification. The proposed method performs
quite well on the most sequences. However, more background
pixels are erroneously detected and classified leading to the
high value of term fp. Although obtaining the high Recall
result, the Precision, F1, and Similarity values can be still
diminished. This tendency is sometimes appeared in the results
of the PETS14 2 and 3.

D. Comparison and Discussion

In this section, the proposed method is compared with
three state-of-the-art methods: the improved adaptive GMM
(denoted as I-GMM) in [4], the original ViBE in [13], and
the spherical K-means Expectation-Maximization method (de-
noted as K-EM) in [8]. For the I-GMM algorithm, the authors
implemented with the the number of components M = 4.
The radius of the sphere R = 20, the time subsampling factor
φ = 16, the cardinality of the set intersection #min = 2, and
the number of distances N = 20 as the default values proposed
in the ViBE algorithm are utilized for testing in this paper.
Finally, the K-EM algorithm is evaluated with following pa-
rameters comprising Kmax = 5, η = 0.005, d = 2, β = 10−6,
T ∈ [2, 5], THP = 0.1, THI = 70, THD = 18, and
τ = 0.5 for the outdoor case. The qualitative and quantitative
comparison are readily represented in Fig. 3 and Table. I,
respectively. In the I-GMM method, parameters are constantly
updated and the appropriate number of components for each
pixel are simultaneously selected by using recursive equations.
This method is so weak under the strong light change in the
CAVIAR dataset and the dynamic movements in the PETS
2014 dataset. It is not evident to observe the objects from the
result of I-GMM in the sequence PETS14 3. Although getting
high Recall results in some testing sequences as CAVIARs
(over 90%), the Precision metric values of I-GMM are too
low (from 30−50 %) because more detected object pixels are
wrongly classified. The number of false positive pixels fp is
considerably greater than the number of true positive pixels
tp (fp = 2tp in the case of CAVIAR 2), hence, it leads to
reduce not only Precision but also F1 and Similarily value
significantly. This fact is appropriate with the visual results in
Fig. 3 with more artifacts detected as foreground pixels. The
ViBE method utilizes the random neighbor selection to correct
pixel intensity and the lifespan policy to update model over
time in the background modeling. The background estimated



by ViBE is robust to be against noise when compared to GMM-
based models. As a combination of the spherical K-means
clustering and the expectation-maximization algorithm based
on updating GMM in the effort to against illumination changes,
K-EM is efficient in shadow removal challenge. Compared
with I-GMM, ViBE and K-EM therefore show the higher per-
formance of evaluation metrics in most of sequences. Similar
to ViBE in the use of the neighbor information, NIC processes
more preferable than ViBE in the background estimation due
to utilizing neighbor pixels in a appropriate window instead
of random pixels. Nevertheless, the accuracy is slightly im-
proved (approximately 5% in average of Similarity for all
sequences). In the competition with I-GMM, NIC wins at all
of the benchmarked datasets with considerably high accuracy
(over 20% in average of Similarity).

TABLE II. COMPARISON OF AVERAGE DETECTION TIME (MS/FRAME)

Sequence Resolution NIC I-GMM ViBE K-EM

PETS09 1 768 × 576 116 148 108 125

PETS09 2 768 × 576 123 151 134 121

PETS09 3 768 × 576 141 167 115 119

PETS14 1 1280 × 960 298 389 221 299

PETS14 2 1280 × 960 363 402 293 357

PETS14 3 1280 × 960 267 391 209 218

E. Computational Measurement

This section analyzes and compares the computational cost
of the proposed method and others through the term of average
detection time (ms/frame). Concretely, the invested time for the
background estimation and foreground detection is computed
through a profiling tool included in the MATLAB 2013a.
The average times of testing sequences are listed in Table.
II. It can be seen that a larger size frame generally requires
more time for processing. The proposed method detects the
foreground faster than I-GMM in the most of sequences and
and achieve an equivalent speed of K-EM. Compared with
ViBE, NIC requires more time than ViBE for computing the
standard deviation instead of the Euclidean distance. Although
the proposed method is not the fastest one, it exhibits the
highest detection performance under dynamic illumination
environments.

IV. CONCLUSIONS

In this work, the efficient background subtraction is pre-
sented based the Neighbor-based Intensity Correction (NIC) al-
gorithm to improve the foreground detection accuracy through
estimating a robust background. The main contribution is the
use of standard deviation, calculated from neighboring pixel
blocks, to identify the center pixel belongs to the background
or object for intensity correction. Compared with existing
background modeling algorithms, NIC is more flexible and
adaptive with medium and high speed motion. In the detection
phase, the background generated by NIC is then provided
to background subtraction scheme to extract the foreground
with an Otsu threshold. Compared with the state-of-the-art
methods comprising I-GMM,ViBE, and K-EM, the proposed
method outperforms in most of testing datasets from 5−20%
of Similarity. However, the limitations are the poor detection
performance in repetitive movements as noise in a background
and high computational cost in the estimation stage. In the
future, we continuously focus on the unexpected background
motion identification and the computational optimization issue.

ACKNOWLEDGMENT

This work was supported by Institute for Information &
communications Technology Promotion(IITP) grant funded
by the Korea government(MSIP) (B0101-15-1282-00010002,
Suspicious pedestrian tracking using multiple fixed cameras).
This work was also supported by the Industrial Core Tech-
nology Development Program, funded by the Korean Ministry
of Trade, Industry and Energy (MOTIE), under grant number
#10049079.

REFERENCES

[1] N. A. Mandellos, I. Keramitsoglou, and C. T. Kiranoudis, “A back-
ground subtraction algorithm for detecting and tracking vehicles,”
Expert Syst. Appl., vol. 38, pp. 1619–1631, Mar 2011.

[2] H. Zhou, Y. Chen, and R. Feng, “A novel background subtraction
method based on color invariants,” Comput. Vis. Image Und., vol. 117,
no. 11, pp. 1589–1597, Nov 2013.

[3] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture
models for real-time tracking,” Proc. IEEE Int. Conf. Comput. Vis.

Pattern Recognit., pp. 246–252, Jun 1999.

[4] Z. Zivkovic, “Improved adaptive gaussian mixture model for back-
ground subtraction,” Proc. IEEE Int. Conf. Pattern Recognition (ICPR),
vol. 2, pp. 28–31, Aug 2004.

[5] D.-S. Lee, “Effective gaussian mixture learning for video background
subtraction,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 5,
pp. 827–832, May 2005.

[6] Z. Wang, H. Xu, L. Sun, and S. Yang, “Background subtraction in
dynamic scenes with adaptive spatial fusing,” Proc. IEEE Int. Workshop

Multimedia Signal Processing (MMSP), pp. 1–6, Oct 2009.

[7] A. Elqursh and A. Elgammal, “Online moving camera background
subtraction,” Proc. European Conf. Computer Vision (ECCV), vol. 4,
pp. 228–241, 2012.

[8] D. Li, L. Xu, and E. D. Goodman, “Illumination-robust foreground
detection in a video surveillance system,” IEEE Trans. Circuits Syst.

Video Technol., vol. 23, no. 10, pp. 1637–1650, Oct 2013.

[9] T. S. F. Haines and T. Xiang, “Background subtraction with dirichlet
process mixture models,” IEEE Trans. Image Process., vol. 36, no. 7,
pp. 670–683, Apr 2014.

[10] J.-M. Guo, C.-H. Hsia, Y.-F. Liu, M.-H. Shih, C.-H. Chang, and J.-
Y. Wu, “Fast background subtraction based on a multilayer codebook
model for moving object detection,” IEEE Trans. Circuits Syst. Video

Technol., vol. 23, no. 10, pp. 1809–1821, Oct 2013.

[11] A. M. Elgammal, D. Harwood, and L. S. Davis, “Non-parametric model
for background subtraction,” Proc. European Conf. Computer Vision

(ECCV), vol. 2, pp. 751–767, 2012.

[12] Z. Liu, K. Huang, and T. Tan, “Foreground object detection using top-
down information based on em framework,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 21, no. 9, pp. 4204–4217, Sep 2012.

[13] O. Barnich and M. V. Droogenbroeck, “Vibe: A universal background
subtraction algorithm for video sequences,” IEEE Trans. Image Pro-

cess., vol. 20, no. 6, pp. 1709–1724, Jun 2011.

[14] S. Gruenwedel, N. I. Petrovic, L. Jovanov, A. J. O. Nino-Casta-neda,
and W. Philip, “Efficient foreground detection for real-time surveillance
applications,” IET Electron. Lett., vol. 49, no. 18, pp. 1143–1145, Aug
2013.

[15] B.-H. Do and S.-C. Huang, “Dynamic background modeling based on
radial basis function neural networks for moving object detection,” Proc.

IEEE Int. Conf. Multimedia and Expo, pp. 1–4, Jul 2011.

[16] R. C. Gonzalez and R. E. Woods, “Digital image processing,” 3rd

Edition, Prentice Hall, 2007.

[17] PETS 2009 Benchmark Data. [Online]. Available:
http://ftp.pets.rdg.ac.uk/pub/PETS2009/

[18] PETS 2014 Benchmark Data. [Online]. Available:
http://ftp.pets.rdg.ac.uk/pub/PETS2014/

[19] L. Maddalena and A. Petrosino, “A self-organizing approach to back-
ground subtraction for visual surveillance applications,” IEEE Trans.

Image Process., vol. 17, no. 7, pp. 1168–1177, Jul 2008.


