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Abstract—To deal with inference and reasoning problems,
Gaussian process has been considered as a promising tool due
to the robustness and flexibility features. Especially, solving the
regression and classification, Gaussian process coupling with
Bayesian learning is one of the most appropriate supervised
learning approaches in terms of accuracy and tractability. Un-
fortunately, this combination tolerates high complexity from
computation and data storage. Obviously, this limitation makes
Gaussian process ill-equipped to deal with the systems requiring
fast response time. In this paper, the research focuses on analyzing
the performance issue of Gaussian process, developing a method
to reduce the complexity and implementing to predict CPU
utilization, which is used as a factor to predict the status of
computing node. Subsequently, a migration mechanism is applied
so as to migrate the system-level processes between CPU cores
and turn off the idle ones in order to save the energy while still
maintaining the performance.

Keywords—Proactive prediction, Bayesian learning, Gaussian
process, energy efficiency, CPU utilization.

I. INTRODUCTION

Gaussian process exists in many research fields, such as
data communication, networking and computer science. It is
widely used as a non-parametric and probabilistic approach
to model the characteristics of a target system. However, this
technique does have one significant drawback. In a standard
implementation, Gaussian process costs O(n3) for computa-
tional complexity and O(n2) for storage complexity, when
calculating n training points of a dataset. Theoretically, these
results come from the matrix inversion and the log determinant
calculation for the covariance matrix and degrades the overall
performance.

There has been quite a bit of research conducted aimed at
overcoming these limitations, which focus on utilizing well-
known mathematical methods, like Cholesky decomposition
and reduced rank covariance matrix. Nevertheless, it is still not
fast enough to satisfy the strict requirements of a large-scale
system. Others are optimization techniques, which seem to be
effective. Nevertheless, these techniques also have reliability
issues and are still slow compared with mathematical methods.

In this paper, we propose a solution for the complexity
problem in Gaussian process regression, particularly related
to time series prediction in the periodic spatial-temporal di-
mension. Theoretically, this approach constructs a combination
of mathematical modeling, convex optimization to reduce the
complexity. In order to verify the proposed idea, an application
aimed at proving the effectiveness of the proposed method

is devised. Basically, this application predicts the multi-cores
CPU utilization and issues the process migration between the
cores in order to achieve the overall energy efficiency while
maintaining a high performance.

This paper is organized as follows. In Section 2, we provide
a summary of the related works that are relevant to this topic.
We detail the regression framework in Section 3. In Section 4,
we conduct the performance evaluation of the energy saving
application. Our conclusion and discussion are summarized in
Section 5.

II. RELATED WORKS

In research concerning the use of Gaussian process for
predicting chaotic time series [1], the Evolving Gaussian pro-
cess method has been proposed to identify chaotic time series
events in the system, as an on-line method for Gaussian process
modeling. In this method, the information is received in the
streaming mode and the hyper-parameters are then adjusted,
adapting the prediction model to the data. Studying hyper-
parameters on-line is interesting; however, in the optimization
phase, this method only engages the Conjugate Gradient (CG)
and Cholesky decomposition for hyper-parameter learning,
which decreases the overall performance because of the high
computational complexity.

Other research on Gaussian process for Big Data [2],
focused on the Stochastic Variational Inference (SVI) method
for constructing Gaussian process models. One interesting
advantage of this approach is the independent complexity with
regard to the dataset. This method allows variational inference
in a very large dataset, showing impressive performance in
terms of the speed of inference. Nonetheless, the SVI only
works properly in a special system in which the observational
and latent variables are globally factorized. Unfortunately,
Gaussian process does not have global variables. In addition,
because of their input independence properties, the SVI-
oriented methods are affected by large variances, which results
in less precise solutions.

Another approach using Improved Fast Gauss Transform
[4], which is a Matrix-Vector Multiplication method, per-
formed better in the hyper-parameter learning. This approach
improves upon the Fast Gauss Transform, which is originally
derived from the well-known Fast Multipole Method, by adap-
tively choosing the precision parameters during the approxi-
mation process. In addition, the IFGT engages a divide-and-
conquer mechanism by partitioning the domain with k-centers



clustering and caching the sum contribution in each level for
acceleration purpose. Despite these notable improvements, the
IFGT still has a critical drawback in that this method mostly
relies on the Fast Gauss Transform, which is only effective
if the objective function can be expanded, using the Taylor
series expansion, to Gaussian-type potential. Unfortunately,
this requirement is not always satisfied in the hyper-parameter
learning phase, resulting in unreliable calculations for the
hyper-parameters estimation. Further elaboration of this issue
and potential solutions will be addressed later in this research.

Although there has been a significant amount of research
focusing on Gaussian process regression, not much progress
has been made in terms of performance improvement, espe-
cially related to optimization. Furthermore, due to the fact that
large-scale data is popular in every current distributed system,
it is necessary to develop a low-complexity and reliable method
to process this kind of data and give the predictive information.

III. PROPOSED METHOD

Fig. 1: The architecture of energy saving application.

A. Target process

To optimize Gaussian process regression in the spatial-
temporal dimension, we choose to use an energy saving ap-
plication for demonstration. The energy efficiency architecture
for a multi-cores CPU is proposed in this section and described
in detail in Figure 1. Basically, the purpose of this architecture
is to pro-actively reduce the energy consumption of the CPU
cores. Thus, the main functionality of this application is to
empty the workload of the CPU cores and then deactivate or
stand-by the idle cores to save energy. To do this effectively,
the migration procedure on the Migrator component needs the
predictive information of the CPU core utilization to determine
the source and the destination in order to migrate the target
process (from this point, the system process being considered
migration will be known as the target process). Primarily based
on the current value of the CPU core’s utilization, known as
the heart-beat, the predictive utilization is calculated in the
Utilization Predictor component and plays a critical role in
subsequent decision making. For a fast reaction in term of
rapid change in the utilization of the CPU cores, the energy-
saving application is implemented as a background daemon
application in each computing node and be responsible for
migrating the system processes between the local CPU cores.

B. Prediction model

In our application, the object of the prediction is to
anticipate the utilization of the CPU cores. Bayesian learning

and Gaussian process regression are employed as the inference
technique and probability framework, respectively. Because the
input data for this model is the time series utilization, curve-
fitting is preferred over function mapping for the mapping
approach. It is important to note that the curve-fitting is more
flexible with regard to the time series data and non-stationary
model.

Assuming that the input data is a limited collection of
time location x = [x1, x2, x3, · · ·xn], a finite set of random
variable Y =[Y1, Y2, Y3,· · · Yn] represents the corresponding
joint Gaussian distribution of incoming processes with regard
to the time order. This set over the time constraint actually
forms up the Gaussian process:

f(y|x) ∼ GP
(
m(x), k(x, x′)

)
(1)

with
m(x) = E

(
f(x)

)
(2)

k(x, x′) = E
((
f(x)−m(x)

)(
f(x′)−m(x′)

))
(3)

in which, m(x) is the mean function, evaluated at the location
x variable, and k(x, x′) is the covariance function, also known
as the kernel function. By definition, the kernel function is a
positive-definite function, used to define the prior knowledge
of the underlying relationship. Basically, the kernel function
is only a mandatory requirement when there is a lack of
finite dimensional form of the feature space. Otherwise, it can
be dropped by directly calculating the sample. However, this
feature space dimension is frequently infinite, which means
that the kernel function cannot be directly calculated. For
this reason, the kernel function technique is often chosen
to tackle the Gaussian process regression. In addition, the
kernel function comprises some special parameters that specify
its own shape. These parameters are referred to as hyper-
parameters. Because the input data comes to the Predictor as a
set of locations, the kernel should be engaged in matrix form.

K =


k(x1, x1) k(x1, x2) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
...

. . .
...

k(xn, x1) k(xn, x2) · · · k(xn, xn)

 (4)

Generally, the Square-Exponential (SE) kernel, also known
as the Radial Basis Function (RBF) kernel, is chosen as a
basic kernel function. In reality, the SE kernel is favored in
most Gaussian process applications, because it requires the
calculation of only a few parameters. Moreover, there is a
theoretical reason to choose this method, as it is a universal
kernel appropriate for any continuous function when enough
data is given. The formula for SE kernel is described as
follows:

kSE(x, x′) = σ2
f exp

(
− (x− x′)2

2l2

)
(5)

in which, σf is an output-scale amplitude and l is a time-scale
of the variable x from one moment to the next. l also stands
for the bandwidth of the kernel and, thereby, the smoothness
of the function in the model. In addition, l also plays the role
of judgment for Automatic Relevance Detection (ARD), to
discard the irrelevant input dimension. In the next step, we



evaluate the posterior distribution of the Gaussian process.
Assuming that the incoming value of the input data is (x∗, y∗),
the joint distribution of the training output is y, and the test
output is y∗, as below:

p

([
y

y∗

])
= GP

([
m(x)

m(x∗)

]
,

[
K(x, x′) K(x, x∗)

K(x∗, x) K(x∗, x∗)

])
(6)

here, K(x∗, x∗) = k(x∗, x∗), K(x, x∗) is the column vector
made from k(x1, x∗), k(x2, x∗) · · · , k(xn, x∗). In addition,
K(x∗, x) = K(x, x∗)

T is the transposition of K(x, x∗). Sub-
sequently, the posterior distribution over y∗ can be evaluated
with the below mean m∗ and covariance C∗.

m∗ = m(x∗) + K(x∗, x)K(x, x′)−1(y −m(x)) (7)

C∗ = K(x∗, x∗)−K(x∗, x)K(x, x′)−1K(x, x∗) (8)

Then
p(y∗) ∼ GP(m∗, C∗) (9)

The best estimation for y∗ is the mean of this distribution:

y∗ = K(x∗, x)K(x, x′)−1y (10)

C. Hyper-parameter learning phase

The proposed model invokes a set of hyper-parameters
θ = [σf , l], which exists both in covariance and mean function.
Theoretically, these hyper-parameters are supposed to be eval-
uated through the marginalization process. By using Bayes’
rule, the equation (9) can be re-written as shown below.

p(y∗|y) =

∫
p(y∗|y, θ)p(y|θ)p(θ) dθ∫

p(y|θ)p(θ) dθ
(11)

In this equation, the marginal likelihood p(y) =∫
p(y|θ)p(θ) dθ is the main point of interest. So far, it

is clear that the Maximum A Posteriori (MAP) estimation
of θ can be obtained when p(θ|y) reaches its maximum [6].
From the first moment of the inference process, the prior
p(θ) must be assigned for the hyper-parameter to reflect the
domain knowledge. Based on the input, this task is not an
obstacle. In addition, according to Bayes’ rule, the probability
p(θ|y) is known to be proportional to p(y|θ). Then, the
optimization step only involves maximizing the log p(y|θ) or
minimizing the negative log p(y|θ).

− log p(y|θ) =
1

2
yTK−1y +

1

2
log |K|+ n

2
log(2π) (12)

Due to the high complexity of re-calculating the matrix
inversion, this is a must to consider another method for hyper-
parameter learning. Instead of putting effort in minimizing the
negative log likelihood, this heavy-load-job can be done faster
by approximately minimizing the upper bound of this term
[8]. Analytically, in equation (12), the dominant computation
focuses on two terms: the data-fit term [9] which is denoted
by yTK−1y and the complexity penalty term or the log
determinant log |K|. Before going further, the equation (12)
should be simplified to reduce the complexity. To do that,
a good approach is to engage the law of log determinant
of the sample covariance matrix which originates in [10]. In
this research, by calculating the log determinant L̂ of sample
covariance matrix K̂, the equation (12) is simplified to

− log p(y|θ) =
1

2
yTK−1y +

1

2
L̂ +

n

2
log(2π) (13)

When the process runs for a long time, the term L̂ also
converges to a constant. This convergence leads to a conclusion
that minimizing the negative log marginal likelihood in this
domain can only involve minimizing the following reduced
negative marginal log likelihood (rMLE).

− log p(y|θ)rMLE =
1

2
yTK−1y (14)

Traditionally, dealing with this task intuitively concerns invers-
ing the covariance matrix K. This matrix operation normally
costs O(n3) which is very computationally expensive. Moti-
vated by the application in the Stochastic Frontier Model [6]
and Kriging problem [11], the Fast Fourier Transform (FFT)
can be a promising method to deal with this complexity. As
mentioned before, the kernel function is a positive-definite
function, then the Fourier Transform makes it possible to
transform this kernel to bring the computation from the spatial-
temporal domain into frequency domain. Consequently, the
most expensive subsequent task is not the matrix inversion.
It concerns calculating the power spectrum which costs only
O(nlogn). Obviously, this cost is much better and faster than
the aforementioned traditional approach. To achieve the above
advantage, first the Squared Exponential kernel kSE(x, x′)
in equation (5) needs to be re-written in Fourier Transform
representation [12] as shown below.

FSE(ω) = lσ2
f

√
2πexp(−2π2ω2l2) (15)

To accelerate the optimization, the non-uniform Fast Fourier
Transform (NUFFT) is applied. According to the rMLE mini-
mization, assuming that Φ is the function generates K̃ = K−1.
Under the periodic assumption, the Parseval theorem [11] can
be applied to derive the Fourier Transform for equation (14)

FrMLE(θ) = F
(
− log p(y|θ)rMLE

)
=

1

2n
ŷT Φ̂ ∗ y◦ (16)

in which the hat sign denotes a Fourier Transform and y◦
denotes the data vector in the periodic domain. In the next step,
by continuing applying the convolution theorem with regard
to the constraint ΦFSE ≡ 1, the final form of the Fourier
Transform of the rMLE can be represented as shown below.

FrMLE(θ) =
1

2n

∑
i

Φ̂i ∗ ŷ2i =
1

2n

∑
i

ŷ2i
FSE(ωi)

(17)

With this form of equation (17), the set of hyper-parameters
θ is no longer expensive to discover by using some gradient-
based techniques. In this case, the Stochastic Gradient Descent
(SGD) is chosen because this optimization technique is suitable
for the large data set, faster than other gradient descent and
critically less sensitive to the local minima [13]. To integrate
the Stochastic Gradient Descent into hyper-parameter learning,
the partial derivatives of the equation (17) are required for
the calculation with regard to each hyper-parameter. These
equations are given by

∂

∂l
FrMLE = ŷ2i exp (2π2l2ω2)

(
2
√

2π3/2ω2

σ2
f

− 1√
2πl2σ2

f

)
(18)

and

∂

∂σf
FrMLE = −

√
2
π ŷ

2
i exp (2π2l2ω2)

lσ3
f

(19)



Fig. 2: Mean prediction and error bar of proposed method given 20 training points on stress test

TABLE I: Computation cost of proposed method

Direct Method Conjugate Gradient Proposed Method
Hyper-parameters learning O(n3) O(n2) O(nlogn)

After getting the partial derivatives, an updating scheme is
issued to update the old hyper-parameters. This scheme is as
follows.

l(k) ← l(k−1) + α(k)
∂

∂l(k−1)
FrMLE (20)

σ
(k)
f ← σ

(k−1)
f + α(k)

∂

∂σ
(k−1)
f

FrMLE (21)

in which, α(k) is the decay function with regard to the kth
iteration. The decay function is chosen instead of the exact line
search or backtracking line search [13] mainly because of the
performance issue. For convenience of calculation, a Robbins-
Monroe sequence is employed to construct the decay function
α(k) = 1/(k + 1). Along with the above partial derivatives, this
decay function ensures the convergence of the optimization
procedure.

To govern the number of iteration for the optimization
algorithm (in this case, the SGD), an error function is defined
based on the Root Mean Square Error (RMSE) method to
measure the convergence. Note that the RMSE method is
stricter than the frequently-used Mean Square Error (MSE)
method. Theoretically, the RMSE threshold is limited to 10−11

which produces a solution very close to the real one. Clearly,
the core of this optimization procedure is to conduct all the
steps in the periodic domain. This means that the optimization

can be done with no need of matrix inversion. Additionally, the
vector of dual weight y0 ≈ Φ∗y◦ can also be estimated in the
spectral domain. By the end of this hyper-parameter learning
phase, the set of hyper-parameters is ready for the Predictor.
The comparison of complexity between the proposed method
and the others can be found in Table I .

IV. PERFORMANCE EVALUATION

A. Experiments

TABLE II: System configuration

Configuration
Platform 64bit
CPU Intel®Core™ i7-3770, 3.40GHz
Storage 800GB
Memory 16GB

OS CentOS 6.5 (final)
Kernel: 2.6.32-431.el6.x86 64

Benchmark stress-1.0.4
Power stat powerstat-0.01.30-1
System stat sysstat-9.0.4-27.el6
Gzip-test-data text file (256 KB)

For the performance evaluation, our experiments are aimed



(a) Execution time comparison between two systems
(lower is better)

(b) Power consumption over one hour running time
(lower is better)

(c) Power saving over one hour running time (d) Hyper-parameter learning speed evaluation (lower is
better)

Fig. 3: Performance evaluation of proposed method

at investigating the performance of the proposed application
in terms of energy efficiency and execution time. In the
initial experiments, the workload is generated via the CPU
intensive benchmark for one hour to determine the energy
savings. In this test, in order to more easily control the
number and the intensiveness of the workload, a benchmark
software, namely stress-1.0.4, is used to simulate the incoming
processes. Otherwise, in the second experiment, ten bunches
of ten concurrent jobs (totally one hundred instances of gzip
command on 256 KB of test data) are pushed into the system to
test the execution time. To aggregate the results, the powerstat
and the sysstat software are used to log the power consumption
and workload statistics, respectively. All of the information of
the benchmarking system is described in Table II .

B. Metrics

The proposed architecture is measured on two levels: the
algorithm level and the application level. In the algorithm level,
the metrics of interest are the completion time of prediction and
the accuracy. In the application level, as previously mentioned,
the energy efficiency and execution time are the metrics to
be measured. If the application is able to save the energy
consumption, as well as to maintain an acceptable execution
time, the energy efficiency of the CPU would be significantly
improved.

C. Results

Application level - execution time evaluation: in the gzip
experiment, the system engaging the energy saving application
is slightly slower than the regular one, increasing from 2%
to 14%. This delay time derives from both predicting the
utilization and migrating the processes. In the worst case,
despite increasing by 14%, the time gap between two systems
is just 6.43*10−3 seconds which is infinitesimal and acceptable
(Figure 3a).

Application level - energy efficiency evaluation: as seen in
the Figure 3b, both systems begin with the stand-by mode,
which costs 91.49 watts to maintain. Both systems had simul-
taneous stress tests for a duration of 60 minutes. Subsequently,
the system with energy saving enabled ends the benchmark
test with a consumption of 154.93 watts, in comparison with
177.96 watts for the regular system. Therefore, 23.03 watts are
saved (which is equivalent to an energy savings of 12.94%)
(Figure 3c). In processor architecture, an energy reduction of
12,94% is significant.

Algorithm level - completion time: as seen in Figure 3d,
within the same error bound (ε = 10−11) and the same
training dataset (around 103 points), the proposed method
approximately takes 17 seconds to finish estimating the hyper-
parameters on the stress test, whereas the CG and Gauss-
Jordan elimination cost 160 seconds and 960 seconds, respec-
tively. For a different training dataset (100 target points in gzip



test), the proposed method needs approximately 1.7 seconds
to finish estimating the hyper-parameters, while the CG and
Gauss-Jordan elimination cost 20 seconds and 66 seconds,
respectively. In particular, for this small test, the original IFGT
algorithm tolerates more failure in the computation. This is
predominant due to the difficulties inherent in applying the
Gaussian-type potential for maximum likelihood estimation.

Algorithm level - accuracy: for the reliability measurement,
because the proposed method also partially relies on the IFGT,
which defines the precision of ε = 10−11 in advance, the
accuracy requirements is always satisfied. For an accuracy
benchmark of 20 consecutive testing points in the stress
experiment, the mean prediction is able to adapt well to the
testing data, with 95% confidence maintained by the variance
(Figure 2).

V. CONCLUSION

The proposed method proves the capability in improving
the power consumption of the computing node. To do that,
the strategy is to predict the utilization of CPU cores, migrate
the target processes and stand-by the idle cores to save the
energy. To sum up, this method has a major contribution
to the field. Based on the knowledge of queuing theory,
stochastic process, and optimization, the proposed method
reduces the complexity of the hyper-parameter learning phase
of the Gaussian process regression technique, from O(n3) to
O(nlogn). With this approach, the prediction on periodic time
series event performs faster, more stably, and more reliably.
This improvement increases the reaction rate of the prediction
method, makes it possible to deal with the large-scale system.
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