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Abstract. There exist multiple activity recognition solutions offering
good results under controlled conditions. However, little attention has
been given to the development of functional systems operating in real-
istic settings. In that vein, this work aims at presenting the complete
process for the design, implementation and evaluation of a real-time ac-
tivity recognition system. The proposed recognition system consists of
three wearable inertial sensors used to register the user body motion, and
a mobile application to collect and process the sensory data for the recog-
nition of the user activity. The system not only shows good recognition
capabilities after offline evaluation but also after analysis at runtime. In
view of the obtained results, this system may serve for the recognition
of some of the most frequent daily physical activities.
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1 Introduction

The identification of human activities has attracted very much attention lately.
Typically, wearable sensors are used to register body motion signals that are
analyzed by following a set of signal processing and machine learning steps to
recognize the activity performed by the user [1]. Most of the existing works in
this area contribute with diverse models that normally yield very high recogni-
tion capabilities [7, 2]. However, a major part of these solutions have only been
validated in controlled environments and through offline evaluations. More im-
portantly, there is a lack of papers covering the whole design process for the
development of a system that can actually recognize human activity in realistic
settings. This paper aims to help filling this gap by contributing with a detailed
description of the steps required to develop a fully functional activity recognition
system for the real-world.
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2 Sensing Infrastructure and Processing Hub

The use of single-sensor recognition systems has predominantly been fostered in
the past [4, 2]. However, multi-sensor configurations have recently been shown to
be required when dealing with real-world technological and practical issues [12, 8,
11]. Likewise, dedicated systems have been used to gather and process the data
coming from multiple sensors to estimate the user activity. Nevertheless, this
trend has lately shifted towards the use of mobile devices since they offer higher
computational power and memory capacity among other features. Accordingly,
the system proposed here consists of three wearable inertial sensors (Fig. 1(a)),
which are used for registering the user body motion, and a mobile application
(Fig. 1(b)), devoted to collecting and processing the sensory data for the recog-
nition and visualization of the user activity. Shimmer2 wearable sensors are used
given the high reliability yielded by these commercial devices. The sensors are
respectively placed on the subject’s chest, right wrist and left ankle and attached
through elastic straps. These placements cover most body movements assuming
that the activities involve a symmetrical execution. The sensors measure the ac-
celeration, rate of turn and magnetic field orientation of the body parts they are
fastened to. The sampling rate used for all sensing modalities is of 50 Hz, enough
for capturing human activity. The sensors are Bluetooth interfaced with the mo-
bile device, which hosts an application built for the aggregation and processing
of the data based on a given activity recognition model.

3 Activity Recognition Model Design

The process of designing an activity recognition model involves three steps:
1) collection of a dataset; 2) definition of candidate models; and 3) evaluation
and selection of the most reliable model. The dataset used here comprises body
motion recordings for ten volunteers wearing the inertial sensors as depicted in
Fig. 1(a), while executing a set of regular activities (Table 1) in an out-of-lab
environment. A detailed description of the dataset can be found in [10].
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Fig. 1. (a) Study setup and sensor deployment. (b) Running application.
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Table 1. Activity set.

L1: Standing still (1 min) L7: Frontal elevation of arms (20×)
L2: Sitting and relaxing (1 min) L8: Knees bending (crouching) (20×)
L3: Lying down (1 min) L9: Cycling (1 min)
L4: Walking (1 min) L10: Jogging (1 min)
L5: Climbing/descending stairs (1 min) L11: Running (1 min)
L6: Waist bends forward (20×) L12: Jump front & back (20×)

Standard recognition models are built then for evaluation. All models use tri-
axial acceleration data since it is the most prevalent sensor modality in wearable
activity recognition [5]. The signals are segmented through a 2-seconds non-
overlapping sliding window approach, which proves a good trade-off between
recognition speed and accuracy for the activities of interest [9]. Three incre-
mental feature sets are considered for their discrimination potential and easy
interpretation in the acceleration domain [4]: FS1 = “mean and standard de-
viation”, FS2 = FS1 + “maximum, minimum and mean crossing rate” and
FS3 = FS2 + “mode, median and kurtosis”. Likewise, four of the most com-
mon machine learning techniques are used for classification: decision trees (DT),
k-nearest neighbors (KNN), naive Bayes (NB) and nearest centroid classifier
(NCC). The k-value for the KNN model is empirically set to three.

The resulting models are evaluated through a 10-fold cross validation process,
which is repeated 100 times to ensure statistical robustness [3]. The F1-score is
used to measure the performance of each candidate model. The results obtained
after evaluation are shown in Fig. 2. Those models utilizing DT for the classi-
fication process are clearly the most accurate among considered for all feature
sets. Moreover, the feature set that leads to the best results is FS2. Thus, the
model considered for implementation builds on the triaxial acceleration collected
from the three wearable sensors; partitions these signals into data windows of
two seconds; extracts the “mean, standard deviation, maximum, minimum and
mean crossing rate” from every data window; and inputs these features to a DT
classifier trained on all the dataset.
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Fig. 2. Results from the offline evaluation of standard activity recognition models.
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4 Activity Recognition Application Development

The activity recognition process is performed on a mobile device. Concretely, an
intuitive app is developed to continously gather the data from the wearable sen-
sors and process it according to the model described before. During the very first
configuration of the app, the sensors must be Bluetooth paired with the mobile
device (Fig. 3(a)). Each sensor is labeled to correctly match each data stream
to the corresponding input of the recognition model (Fig. 3(b)). Thereafter, the
user can start the activity recognition process by clicking on the corresponding
start button (Fig. 3(c)), which also triggers the streaming of the wearable sen-
sors to the mobile device. From then on, the app shows the recognized activity
based on the analysis of the movements performed by the user (Fig. 3(d)).

The application has been implemented using the mHealthDroid framework
[10]. This open source framework is devised to support the agile and easy devel-
opment of mHealth applications on Android. The communication functionality
relies on the mHealthDroid Communication Manager, which abstracts the un-
derlying mobile and wearable devices, makes the communication transparent to
the application and provides a unified and interpretable data format. Concretely,
the mHealthDroid Adapters for Shimmer2 wearable devices are used for these
devices to communicate with the mobile phone and to map their data to the
proprietary format. In this manner, the registered triaxial acceleration samples
are made available to the diverse components of the application.

A major interest in using mHealthDroid comes from the functionalities it
provides for implementing a full recognition model. The Segmentation, Feature
Extraction and Classification functionalities of the mHealthDroid Data Process-
ing Manager are used here, some of which build on a stripped version of the

(a) (b) (c) (d)

Fig. 3. Snapshots from the activity recognition application: (a) scan process for dis-
covering the sensors; (b) wearable sensors are paired and further labeled according to
their placement; (c) sensors are matched to the corresponding inputs of the recognition
model; (d) the application recognizes the activity performed by the user.
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popular WEKA Data Mining Software [6]. Thus, to realize the designed recogni-
tion model, a 2-seconds windowing process is generated, the required statistical
features are instantiated and the trained DT model is implemented.

The sensory data collected during the execution of the system can also be
stored on a local database. Although this is not required for the recognition
of the user activity, it is considered here for a potential inspection and review
of the collected data at the point of need. The mDurance storage functionality
builds on top of the mHealthDroid Storage Manager, which provides a high
level of abstraction from the underlying storage technology and enables data
persistence, both locally and remotely. In the current implementation, the app
stores data locally on a SQLite database deployed on the mobile phone SD card.

5 Real-Time Evaluation

The developed recognition system is validated at runtime in realistic conditions.
To that end, five independent volunteers were asked to perform the complete ac-
tivity set (Table 1). Both user’s activity and smartphone’s screen were recorded
on video for the evaluation of the system performance. The results of the evalu-
ation are shown in Fig. 4. In broad strokes, it can be said that the system shows
good recognition capabilities. Only a few misclassifications are observed. For ex-
ample, during the identification of “sitting and relaxing”, the model sometimes
interprets that the users are bending their waist forward or elevating their arms.
This is explained by some abrupt movements observed during the execution of
this activity for some of the participants. Similarly, some errors are found for
the detection of “knees bending or crouching”, which is confused here again with
“waist bend forwards”. This is a consequence of some difficulties encountered by
part of the users while performing this exercise, which translated into a moderate
sway back and forth. Finally, a few misclassifications are observed among “walk-
ing”, “jogging” and “running”, which are basically originated from the varying
cadence with which these activities were executed by the subjects.
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Fig. 4. Confusion matrix obtained from the online evaluation of the activity recognition
model. Activities are identified through the labels used in Table 1.
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6 Conclusions

This work has summarized the complete process for the realization of a multi-
sensor activity recognition system for real-time applications. The system employs
various wearable inertial sensors attached to different body parts to register a
wide-spectrum of regular movements. The recorded data is transmitted to a
mobile application that processes the information for the recognition of the user
activity. This application develops on a recent mHealth framework that provides
several functionalities significantly reducing the implementation time. Future
extension of this work includes the incorporation of healthy physical lifestyles
recommendations based on the analysis of the user activity patterns.
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