
Replication Management Framework for HDFS
based on Prediction Technique

Dinh-Mao Bui∗, Thien Huynh-The∗, Sungyoung Lee∗, Bin Li†
∗Computer Engineering Department, Kyung Hee University, Suwon, Korea

{mao, thienht, sylee}@oslab.khu.ac.kr
†College of Information Engineering, Yangzhou University, China

{lb}@yzu.edu.cn

{jinwang}
Abstract—The number of application based on Apache

Hadoop is increasing dramatically due to the robustness and dy-
namic features of this system. At the heart of Apache Hadoop, the
Hadoop File System (HDFS) provides the reliability, scalability
and high availability to computation by applying a static replica-
tion strategy. However, because of the characteristics of parallel
operations on the application layer, the accessing frequency
for each data file in HDFS is totally different. Consequently,
maintaining the same replicating mechanism for every data file
might lead to bad effects on the performance. By rigorously
considering the drawbacks of HDFS architecture, this paper
proposes an approach to dynamically replicate the data file
based on the predictive analysis. With the help of probability
theory, the utilization of each data file can be predicted to
create an individual replication strategy. Eventually, the data
file can subsequently be replicated depending on its own access
potential. Hence, this approach simultaneously improves the data
locality while keeping the analogous redundancy of data storage
in comparison with the default replicating scheme.

Keywords—Replication, HDFS, proactive prediction, Bayesian
Learning, Gaussian Process.

I. INTRODUCTION

Evolution on Big Data has created trends in application
and solution development to extract, process, and store useful
information as it emerges to deal with new challenges. In
this area, the Apache Hadoop is the most renowned parallel
framework. Not only used to achieve the high availability,
Apache Hadoop is designed to detect and handle failures at
the application as well as to maintain the data consistency.

Along with the development of Hadoop, the Hadoop Dis-
tributed File System (HDFS) has been introduced to provide
the reliable, high-throughput access to parallel computing.
Gradually, it becomes a suitable storage framework for parallel
and distributed processing, especially for MapReduce-type
solution, which was originally developed by Google to cope
with the Big Data.

For improving the fault tolerance and reliability as well as
providing the high availability and high performance, HDFS is
initially equipped with a mechanism to replicate three copies
of every data file from time to time. As time goes by, this
replication strategy consumes storage resource and adds extra
overhead to the system by making replicas of less frequently
accessed data. Furthermore, although the speed of reading

operation in HDFS might be improved by the available data,
the performance of writing operation suffers the side effect of
over-synchronizing unpopular data. Thus, it is reasonable to
make an inference that the static replicating mechanism results
the entire system in poorer performance than the benefit it
contributes.

In this paper, a framework which makes the replicating
component more effective is proposed. Not only is the nature
of the accessing frequency is taken into account, but also the
replica placement is considered. Subsequently, the data file in
HDFS is replicated based on its utilization potential as well
as the overall status of the system. Moreover, the anticipated
result and access pattern are stored in the knowledge base
for instantly matching and quickly firing the suitable action
without re-calculating on similar input. From time to time,
each data file would be efficiently replicated by differently
appropriate strategy. By implementing this framework, the task
execution time of Hadoop can be improved and benefit the
productivity of Big Data system.

The remainder of this paper is organized as follows. In Sec-
tion 2, related works relevant to the topic are provided. Section
3 presents an architectural overview of the background while
Section 4 includes the detail of the prediction mechanism.
In Section 5, the performance evaluation for the prediction
framework is conducted. Conclusion is summarized in Section
6.

II. RELATED WORKS

A. System architecture

The Cost-effective Dynamic Replication Management
(CDRM) [1] is a cost-effective framework for replication in
cloud storage system. When the workload changes, CDRM
calculates the popularity of data file and determines the loca-
tion in the cloud environment. However, this technique follows
a reactive model. As a result, by using threshold values, CDRM
can not adapt well to the rapid evolution in large-scale systems.

Similarly, DARE [2] is another reactive model of replica-
tion for HDFS. In this model, the probabilistic sampling and
competitive aging algorithm are used independently on each
node to choose a replicating scheme for each data file as well
as to decide the suitable location for each replica. Because
DARE shares the same reactive-oriented approach like CDRM,
it also shares the similar mal-adaptive properties.

, Jin Wang†

College of Information Engineering, Yangzhou University, China†
@yzu.edu.cn

2015 Third International Conference on Advanced Cloud and Big Data

978-1-4673-8537-4/15 $31.00 © 2015 IEEE

DOI 10.1109/CBD.2015.19

58

2015 Third International Conference on Advanced Cloud and Big Data

978-1-4673-8537-4/15 $31.00 © 2015 IEEE

DOI 10.1109/CBD.2015.19

58

2015 Third International Conference on Advanced Cloud and Big Data

978-1-4673-8537-4/15 $31.00 © 2015 IEEE

DOI 10.1109/CBD.2015.19

58

Fig. 1: Architecture of Adaptive Replication Management system (ARM).

The Elastic Replication Management System (ERMS) [3]
takes into account an Active/Standby model for data storage
in the HDFS cluster by implementing the complex event
processing to classify the data types. The advanced concept
of ERMS compared to CDRM and DARE is to dynamically
change the thresholds for metrics based on the status of the
HDFS cluster system. In addition, ERMS is equipped with the
ability to determine and erase unpopular replicas to save the
storage.

Nevertheless, although CDRM, DARE and ERMS are
developed in different ways, all of them encounter the same
problem and limitation. Concretely, these solutions try to
classify and implement various replicating scenarios for each
type of data file by extracting and processing the obsolete
information from the monitoring statistic. For that reason, these
approaches can not generate an optimal replication strategy for
parallel systems. Clearly, the reason is when some actions are
chosen to handle ’hot’ data files, due to high latency and delay,
these files may not be ’hot’ anymore at the time the actions
are engaged. Then, the replicating decision can not reflect the
trend of data utilization.

The approach in Scarlett solution [4] implements the prob-
ability as an observation and then calculates the replicating
scheme for each data file. Storage budget-limitation is also
considered as a factor when distributing the replicas. Although
this solution follows a proactive approach instead of using
thresholds as in the reactive model, the intensity characteristic
of the data file as well as the suitable placement for replicas
are not discussed thoroughly.

Lastly, in OPTIMIS [5], an interesting solution for an-
ticipating the data file status has been proposed. In this

approach, the data file is also classified and engaged in one
of few different replicating scenarios based on the algorithmic
prediction of the demand for data file utilization. However, the
Fourier Series Analysis algorithm, which is usually selected to
analyze in signal processing, is chosen for prediction without
a compelling proof of the efficacy. As a consequence, this
inappropriate choice can result in poor prediction.

By examining related works, we conclude that although the
research on replication strategies exists, not many researchers
have thoroughly considered access frequency in the relation-
ship with the big picture of system status. Furthermore, since
Hadoop is no longer a standalone solution, but gradually a
complex ecosystem. In that case, a more adaptive replicating
mechanism must be developed to enhance the performance of
Big Data systems, especially in the execution time and data
throughput.

III. PROPOSED ARCHITECTURE

The purpose of the proposed idea is to design an Adap-
tive Replication Management system (hereinafter, ARM) for
HDFS. In other words, the main function of this system is to
dynamically scale the replication factor as well as to smartly
schedule the placement for replicas based on the access po-
tential of each data file. Additionally, to reduce the calculation
time, knowledge base and heuristic technique are implemented
as the extra components to detect similarities in the access
pattern between the in-processing file and the predicted one.
Two files with similar access behaviors are treated by the same
replication strategy. However, because these techniques are
standardized and widely used in various systems to accelerate
the decision making procedure, discussing them is not in the
scope of this paper.

595959

Constructing on top of the Hadoop File System and Open
Nebula Orchestrator, the proposed system takes responsibility
to manage the replication over the virtualized HDFS instances.
An overview of the proposed ARM is described in Figure 1.
In this architecture, instead of using the physical servers
for the computing nodes, the virtual machines are preferred
because of the flexibility, elasticity, multi-tenancy and on-
demand deployment features.

As described in Figure 1, the system starts by periodically
collecting the heart-beat. After that, the training data goes to
the Heuristic Detector as input. This training data is compared
with the access pattern, which extracted from the Predictor
component and stored at the knowledge base. The pattern is
actually a set of eigenvectors describing the properties of the
previously processed data and be used for matching purpose at
the Heuristic Detector. At this stage, the features of input are
compared with the pattern to look for similarities. If there is
a matched, the access potential is retrieved from that pattern
and directly passed to the Predictor component without any
computation. Therefore, only one kind of data arrives at the
Predictor, training data or the extracted access potential, but
not both at the same time.

Before discussing the Predictor, it is essential to introduce
the Monitoring System. Mainly based on the Ganglia frame-
work, the Monitoring System is simple, robust and easy to
configure for monitoring most of the required metrics. After
plugging in the HDFS virtual nodes as well as the physical
servers, the Monitoring System can collect statistic via Ganglia
API. This information helps the replication management to
determine which virtual node is busy and which physical server
is blocked.

If the access potential comes to the Predictor as described
in Figure 2, it means the training data is matched with a
previous access pattern. Then, this access potential is directly
forwarded to the Replication Management to create a repli-
cation strategy. No computation is needed. Otherwise, if the
training data comes, the Predictor has to compute to achieve
the access potential for files.

IV. PREDICTION MODEL

The object of prediction in ARM is to anticipate the
access potential of the data file. To obtain this target, Bayesian
learning and Gaussian process are employed as the inference
technique and probability framework, respectively. Assume
that the input data is a time location set x = [x1, x2, x3, · · ·xn],
a finite set of random variables Y = [Y1, Y2, Y3, · · ·Yn]
represents the corresponding joint Gaussian distribution of
access rate with regard to the time order. This set over the
time constraint forms the Gaussian process.

f(y|x) ∼ GP(
m(x), k(x, x′)

)
(1)

with
m(x) = E

(
f(x)

)
(2)

k(x, x′) = E

((
f(x)−m(x)

)(
f(x′)−m(x′)

))
(3)

in which, m(x) is the mean function evaluated at the loca-
tion x variable, k(x, x′) is the covariance function, also known

as the kernel function [15]. Usually, the Square-Exponential
(SE) kernel, also known as the Radial Basis Function (RBF)
kernel, is chosen as follows.

kSE(x, x
′) = σ2

f exp

(
− (x− x′)2

2l2

)
(4)

in which, σf is an output-scale amplitude and l is a time-scale
of the variable x from one moment to the next. l also stands
for the bandwidth of the kernel and thereby the smoothness
of the function in the model. Besides, l also plays the role of
judgment for Automatic Relevance Detection (ARD) to discard
the irrelevant input.

On the next step, the posterior distribution of the Gaussian
process is evaluated. Assume that the incoming value of the
input data is (x∗, y∗), the joint distribution of the training
output is y, and the test output is y∗, as in the form below.

p

([
y

y∗

])
= GP

([
μ(x)

μ(x∗)

]
,

[
K(x, x′) K(x, x∗)
K(x∗, x) K(x∗, x∗)

])
(5)

here, K(x∗, x∗) = k(x∗, x∗), K(x, x∗) is the column vector
made from k(x1, x∗), k(x2, x∗) · · · , k(xn, x∗). And K(x∗, x)
= K(x, x∗)T is the transposition of K(x, x∗). After that, the
posterior distribution over y∗ can be evaluated with the below
mean m∗ and covariance C∗.

m∗ = μ(x∗) + K(x∗, x)K(x, x′)−1(y − μ(x)) (6)

C∗ = K(x∗, x∗)−K(x∗, x)K(x, x′)−1K(x, x∗) (7)

then
p(y∗) ∼ GP(m∗, C∗) (8)

The best estimation for y∗ is the mean of this distribution.

y∗ = K(x∗, x)K(x, x′)−1y (9)

Also, the uncertainty of the estimation is captured in the
variance of the distribution as follows.

var(y∗) = K(x∗, x∗)−K(x∗, x)K(x, x′)−1K(x, x∗) (10)

V. PERFORMANCE EVALUATION

A. Experiments

For the evaluation, three experiments are used to evaluate
the performance of the proposed ARM. The first experi-
ment is conducted on the Facebook cluster trace, namely
the Statistical Workload Injector for MapReduce (SWIM)
[35] [36]. Typically, this is the workload replay scripts to
generate the real-life workloads from a Facebook production
system. By sampling the historical MapReduce cluster traces,
the SWIM provides an efficient method to measure the ef-
fectiveness of the solution, which intends to improve Big
Data replication on the realistic data set. Two sets of syn-
thesized day-long workloads, namely Facebook trace 01 (FB-
2009 samples 24 times 1hr 0.tsv) and Facebook trace 02
(FB-2010 samples 24 times 1hr 0.tsv) are studied. Each set
contains 24 historical traces sampled on a 600-machines clus-
ter. The second experiment is the famous TeraSort stress test
released by Yahoo!. This is a benchmark program written in
MapReduce and included by default in Hadoop distribution.
Basically, the TeraSort builds a sample key structure by select-
ing the subsets from the input before submitting the job and

606060

Fig. 2: Working mechanism of Predictor component.

TABLE I: System Configuration

Configuration
Computing
Nodes

01 Name Node, 8 Data Nodes

Node Types XEN’s Virtual Machine
Platform 64bit

CPU Cores
Intel®Core™ i7-3770, 3.40GHz
4 cores for Name Node
1 cores for each Data Node

Storage
500GB for Name Node
100GB for each Data Node

Memory
16GB for Name Node
8GB for each Data Node

Network Gigabit NIC

OS
CentOS 6.5 (final)
Kernel: 2.6.32-431.el6.x86 64

Software Apache Hadoop 2.0.0-cdh4.7.0

pushing this key structure into HDFS. Intuitively, the purpose
of TeraSort is to sort a large volume of data rapidly. The third
experiment is the TestDFSIO experiment. The TestDFSIO is a
benchmark tool to discover the HDFS capability. In essence,
this tool is developed to evaluate the I/O performance for
HDFS. Additionally, the Hadoop version used in the evaluation
is also modified to accept the dynamic replication factor as
well as the flexible placement decision which is made by ARM
system. The computing system used for these experiments is
described in Table I .

B. Metrics

The data locality and data redundancy are the metrics
of interest. In addition, some relevant factors such as read
throughput and execution time are also considered. For the
data locality evaluation, the metric is calculated in percentage
as follows.

Mdl =
Accesslocal
Accesstotal

(11)

in which, Mdl is the data locality metric estimated by
the fraction of the local access Accesslocal over the total
access Accesstotal of every HDFS files. The counting for these
accesses is executed automatically by the Monitoring System.
Besides, the effect of data locality metric can be measured
via the TestDFSIO experiments for execution time and read
throughput of Hadoop system. The next system metric, as
mentioned above, is the data redundancy. Obviously, if the
HDFS replicating component creates too many replications,
the data locality is improved in a spectacular rate. However,
the side effect of this uncontrollable over-replication can rule
the network to the congestion problem which directly makes
the system unreliable and critically degrades the performance.
Due to that reason, if the data locality can be improved with the
well-bounded data redundancy, the performance of the whole
Big Data system would be increased in terms of computational
efficiency and network utilization. The data redundancy metric
is evaluated via the shape of distribution (probability density
function or pdf) of replication factors.

C. Results

By averaging the results from both Facebook trace tests,
ARM scores approximately 4 times better for the data locality

616161

(a) Distribution (pdf) of each method. (b) Data locality metric evaluation (higher is better).

(c) Execution time benchmark of TestDFSIO (lower is better). (d) Read throughput benchmark of TestDFSIO (higher is better).

Fig. 3: Performance evaluation of proposed method on system level

metric in compared with the default scheme (Figure 3b).
However, in these experiments, ARM gets lower result than
ERMS and DARE (6.60% and 11,45% lower, respectively).
In the TeraSort experiment (also in Figure 3b), ARM achieves
3.3 times improvement for the data locality compared with
the default scheme. Clearly, the ERMS and DARE respectively
continue scoring better results (8.25% and 18.53% higher) with
regard to ARM. However, in Figure 3a, the variance shapes
of replication factor distribution of ERMS and DARE are very
narrow. It means these two methods usually set high replication
factors for every data files to achieve better data locality metric.
This behavior could definitely sacrifice the storage resource
and network bandwidth.

On the execution time benchmark of TestDFSIO experi-
ment (Figure 3c), it can be seen obviously that ARM outper-
forms ERMS and DARE when file size increases, even ARM
has a lower score in previous data locality evaluation. In the
last experiment case of 4GB of file size, ARM finishes the
tasks in 17.38% and 62.36% faster than ERMS and DARE,
respectively. The same situation happens when investigating
the read throughput factor on Figure 3d. ARM continues
surpassing ERMS and DARE in every experiment cases of
file size. In fact, when engaging ERMS and DARE, the HDFS
system seems to reserve too many CPU cycles for transferring

and writing the replicas. It can lead the whole system into
the disk-operation overhead. Subsequently, the transferring
replicas may not be available to serve the computation.

VI. CONCLUSION

The main purpose of this research is to improve the data
locality metric by using the prediction technique. With rigorous
analysis of the characteristics of file operation in HDFS, the
uniqueness of our idea is to create an adaptive and effective
solution to extend the capability of Big Data systems. For
further development, some parts of the source code developed
for testing our idea would be made available under the terms
of the GNU general public license (GPL).

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea govern-
ment(MSIP) NRF-2014R1A2A2A01003914 and by the MSIP
(Ministry of Science, ICT&Future Planning), Korea, under the
ITRC (Information Technology Research Center) support pro-
gram (NIPA-2014(H0301-14-1020)) supervised by the NIPA
(National IT Industry Promotion Agency)

626262

REFERENCES

[1] Q. Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng, “Cdrm: A cost-
effective dynamic replication management scheme for cloud storage
cluster.” in Cluster Computing (CLUSTER), 2010 IEEE International
Conference on, Sept 2010, pp. 188–196.

[2] C. L. Abad, Y. Lu, and R. H. Campbell, “Dare: Adaptive data replication
for efficient cluster scheduling.” in CLUSTER. IEEE, 2011, pp. 159–
168.

[3] Z. Cheng, Z. Luan, Y. Meng, Y. Xu, D. Qian, A. Roy, N. Zhang, and
G. Guan, “Erms: An elastic replication management system for hdfs.” in
Cluster Computing Workshops (CLUSTER WORKSHOPS), 2012 IEEE
International Conference on, Sept 2012, pp. 32–40.

[4] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg,
I. Stoica, D. Harlan, and E. Harris, “Scarlett: Coping with skewed
content popularity in mapreduce clusters.” in Proceedings of the
Sixth Conference on Computer Systems, ser. EuroSys ’11. New
York, NY, USA: ACM, 2011, pp. 287–300. [Online]. Available:
http://doi.acm.org/10.1145/1966445.1966472

[5] G. Kousiouris, G. Vafiadis, and T. Varvarigou, “Enabling proactive data
management in virtualized hadoop clusters based on predicted data
activity patterns.” in P2P, Parallel, Grid, Cloud and Internet Computing
(3PGCIC), 2013 Eighth International Conference on, Oct 2013, pp. 1–
8.

[6] J. Cunningham, Z. Ghahramani, and C. E. Rasmussen, “Gaussian pro-
cesses for time-marked time-series data.” in AISTATS, ser. JMLR Pro-
ceedings, N. D. Lawrence and M. Girolami, Eds., vol. 22. JMLR.org,
2012, pp. 255–263.

[7] R. Yates, Probability and Stochastic Processes: A Friendly
Introduction for Electrical and Computer Engineers, 3rd
Edition: Third Edition, ser. Probability and Stochastic
Processes: A Friendly Introduction for Electrical and Computer
Engineers. Wiley Global Education, 2014. [Online]. Available:
http://books.google.co.kr/books?id=zn5bAgAAQBAJ

[8] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, ser. Springer Series in Statistics. New York, NY, USA:
Springer New York Inc., 2001.

[9] J. Hensman, N. Fusi, and N. D. Lawrence, “Gaussian processes for big
data.” CoRR, vol. abs/1309.6835, 2013.

[10] G. Chowdhary, H. Kingravi, J. How, and P. Vela, “Bayesian nonpara-
metric adaptive control using gaussian processes.” Neural Networks and
Learning Systems, IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2014.

[11] R. Grande, G. Chowdhary, and J. How, “Nonparametric adaptive control
using gaussian processes with online hyperparameter estimation.” in
Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on,
Dec 2013, pp. 861–867.

[12] C. E. Rasmussen, “Evaluation of gaussian processes and other methods
for non-linear regression.” Ph.D. dissertation, Toronto, Ont., Canada,
Canada, 1997, aAINQ28300.

[13] X. Wu, Performance Evaluation, Prediction and Visualization of
Parallel Systems, ser. The International Series on Asian Studies in
Computer and Information Science. Springer US, 1999. [Online].
Available: http://books.google.co.kr/books?id=IJZt5H6R8OIC

[14] R. Gallager, Stochastic Processes: Theory for Applications.
Cambridge University Press, 2013. [Online]. Available:
http://books.google.co.kr/books?id=CGFbAgAAQBAJ

[15] K. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf, “An
introduction to kernel-based learning algorithms.” Neural Networks,
IEEE Transactions on, vol. 12, no. 2, pp. 181–201, Mar 2001.

[16] E. G. Tsionas, “Maximum likelihood estimation of stochastic frontier
models by the fourier transform.” Journal of Econometrics, vol. 170,
no. 1, pp. 234–248, 2012.

[17] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kgl, “Algorithms for hyper-
parameter optimization.” in NIPS, J. Shawe-Taylor, R. S. Zemel, P. L.
Bartlett, F. C. N. Pereira, and K. Q. Weinberger, Eds., 2011, pp. 2546–
2554.

[18] E. Rodner, A. Freytag, P. Bodesheim, and J. Denzler, “Large-scale
gaussian process classification with flexible adaptive histogram kernels.”
in ECCV (4), ser. Lecture Notes in Computer Science, A. W. Fitzgibbon,
S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, Eds., vol. 7575.
Springer, 2012, pp. 85–98.

[19] C. Rasmussen and C. Williams, Gaussian Processes for
Machine Learning, ser. Adaptive Computation And Ma-
chine Learning. MIT Press, 2005. [Online]. Available:
http://www.gaussianprocess.org/gpml/chapters/

[20] T. T. Cai, T. Liang, and H. H. Zhou, “Law of log determinant of
sample covariance matrix and optimal estimation of differential entropy
for high-dimensional gaussian distributions.” CoRR, vol. abs/1309.0482,
2013.

[21] J. de Baar, R. Dwight, and H. Bijl, “Speeding up kriging through fast
estimation of the hyperparameters in the frequency-domain.” Computers
& Geosciences, vol. 54, no. 0, pp. 99–106, 2013.

[22] P. Sollich and C. K. I. Williams, “Understanding gaussian process
regression using the equivalent kernel.” in Deterministic and Statistical
Methods in Machine Learning, ser. Lecture Notes in Computer
Science, J. Winkler, M. Niranjan, and N. D. Lawrence, Eds.,
vol. 3635. Springer, 2004, pp. 211–228. [Online]. Available:
http://dblp.uni-trier.de/db/conf/dsmml/dsmml2004.html

[23] S. Boyd and L. Vandenberghe, Convex Optimization.
Cambridge University Press, 2004. [Online]. Available:
http://books.google.co.kr/books?id=mYm0bLd3fcoC

[24] D. Petelin, B. Filipič, and J. Kocijan, “Optimization of gaussian
process models with evolutionary algorithms.” in Proceedings
of the 10th International Conference on Adaptive and Natural
Computing Algorithms - Volume Part I, ser. ICANNGA’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 420–429. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1997052.1997098

[25] J. R. Shewchuk, “An introduction to the conjugate gradient method
without the agonizing pain.” Pittsburgh, PA, USA, Tech. Rep., 1994.

[26] C. Yang, R. Duraiswami, N. Gumerov, and L. Davis, “Improved fast
gauss transform and efficient kernel density estimation.” in Computer
Vision, 2003. Proceedings. Ninth IEEE International Conference on,
Oct 2003, pp. 664–671 vol.1.

[27] C. Yang, R. Duraiswami, and L. S. Davis, “Efficient kernel machines
using the improved fast gauss transform.” in NIPS, 2004.

[28] T. I. Alecu, S. Voloshynovskiy, and T. Pun, “The gaussian transform.”
in EUSIPCO2005, 13th European Signal Processing Conference, 2005,
pp. 4–8.

[29] L. Greengard and J. Strain, “The fast gauss transform.” SIAM Journal
on Scientific and Statistical Computing, vol. 12, no. 1, pp. 79–94, 1991.

[30] M. Spivak, S. K. Veerapaneni, and L. Greengard, “The fast generalized
gauss transform.” SIAM J. Sci. Comput., vol. 32, no. 5, pp. 3092–3107,
Oct. 2010. [Online]. Available: http://dx.doi.org/10.1137/100790744

[31] R. S. Sampath, H. Sundar, and S. K. Veerapaneni, “Parallel
fast gauss transform.” in Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 1–10. [Online].
Available: http://dx.doi.org/10.1109/SC.2010.39

[32] V. Simoncini and D. B. Szyld, “Theory of inexact krylov subspace
methods and applications to scientific computing.” SIAM Journal on
Scientific Computing, vol. 25, no. 2, pp. 454–477, 2003.

[33] V. I. Morariu, B. V. Srinivasan, V. C. Raykar, R. Duraiswami, and L. S.
Davis, “Automatic online tuning for fast gaussian summation.” in NIPS,
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds. Curran
Associates, Inc., 2008, pp. 1113–1120.

[34] K. Chalupka, C. K. I. Williams, and I. Murray, “A framework for
evaluating approximation methods for gaussian process regression.”
CoRR, vol. abs/1205.6326, 2012.

[35] Y. Chen, A. Ganapathi, R. Griffith, and R. H. Katz, “The case for eval-
uating mapreduce performance using workload suites.” in MASCOTS.
IEEE, 2011, pp. 390–399.

[36] Y. Chen, S. Alspaugh, and R. H. Katz, “Interactive query processing in
big data systems: A cross-industry study of mapreduce workloads.” in
VLDB. IEEE, 2012, pp. 390–399.

[37] T. Andrews, “Computation time comparison between matlab and c++
using launch windows.” San Luis Obispo, SLO, CA, 93407, USA, Tech.
Rep., 2012.

636363

