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Abstract. To deal with inference and reasoning problems, Gaussian process has 

been considered as a promising tool due to the robustness and flexibility 

features. Especially, solving the regression and classification, Gaussian process 

coupling with Bayesian learning is one of the most appropriate supervised 

learning approaches in terms of accuracy and tractability. Because of these 

features, it is reasonable to engage Gaussian process for energy saving purpose. 

In this paper, the research focuses on analyzing the capability of Gaussian 

process, implementing it to predict CPU utilization, which is used as a factor to 

predict the status of computing node. Subsequently, a migration mechanism is 

applied so as to migrate the system-level processes between CPU cores and turn 

off the idle ones in order to save the energy while still maintaining the 

performance. 

Keywords: Proactive prediction, Bayesian learning, Gaussian process, energy 

efficiency, CPU utilization 

1   Introduction 

Research in energy consumption is one of the hot trends in recent years. From time to 

time, this topic has been the major issue in most of the computing systems. Coming 

up with the higher performance that the computing node achieves, a large amount of 

energy is also taken in to account as significant costs. Theoretically, energy is used to 

conduct the computation, especially in servers. When the servers are up and running, 

even when they are idle, the energy is still wasted to maintain the power-on status. 

For that reason, enhancing the energy efficiency in computing system concerns 

reducing the energy waste on idle computing facilities. However, this effort is 

challenged by the problem to concurrently maintain the performance. 

In this paper, we propose a proactive solution for energy saving in CPU level. By 

applying the prediction technique which is the Gaussian process regression, the 

energy application predicts the multicore CPU utilization and activates the process 

migration between the cores in order to achieve the overall energy efficiency while 

maintaining a high performance.  
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This paper is organized as follows. We detail our energy efficiency approach in 

Section 2. In Section 3, we conduct the performance evaluation of the energy saving 

application. Our conclusion is summarized in Section 4. 

2   Proposed Method 

2.1   Target process 

 

The energy efficiency architecture for a multi-cores CPU is proposed in this section 

and described in detail in Fig.1. Basically, the purpose of this architecture is to pro-

actively reduce the energy consumption of the CPU cores. Thus, the main 

functionality of this application is to empty the workload of the CPU cores and then 

deactivate or stand-by the idle cores to save energy. To do this effectively, the 

migration procedure on the Migrator component needs the predictive information of 

the CPU core utilization to determine the source and the destination in order to 

migrate the target process (from this point, the system process being considered 

migration will be known as the target process). Primarily based on the current value 

of the CPU core's utilization, known as the heart-beat, the predictive utilization is 

calculated in the Utilization Predictor component and plays a critical role in 

subsequent decision making.  

 2.2   Prediction model 

In our application, the object of the prediction is to anticipate the utilization of the 

CPU cores. Bayesian learning and Gaussian [1,2,3,4] process regression are employed 

as the inference technique and probability framework, respectively. Because the input 

data for this model is the time series utilization [5], curve-fitting is preferred over 

Fig.1 The architecture of energy saving application. 
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function mapping for the mapping approach. It is important to note that the curve-

fitting is more flexible with regard to the time series data and non-stationary model. 

Assuming that the input data is a limited collection of time location x=[x1, x2, x3,…xn], 

a finite set of random variable Y=[Y1, Y2, Y3,…Yn] represents the corresponding joint 

Gaussian distribution of incoming processes with regard to the time order. This set 

over the time constraint actually forms up the Gaussian process: 

 

���|�� ~ 	
�����, ��, �′�� (1) 

with  

���� = ������� (2) 

and 

��, ��� = ������� − ����������� − ���′��� (3) 

in which, m(x) is the mean function, evaluated at the location x variable, and k(x,x') is 

the covariance function, also known as the kernel function[6,7,8]. By definition, the 

kernel function is a positive-definite function, used to define the prior knowledge of 

the underlying relationship. Basically, the kernel function is only a mandatory 

requirement when there is a lack of finite dimensional form of the feature space. 

Otherwise, it can be dropped by directly calculating the sample. However, this feature 

space dimension is frequently infinite, which means that the kernel function cannot be 

directly calculated. For this reason, the kernel function technique is often chosen to 

tackle the Gaussian process regression. In addition, the kernel function comprises 

some special parameters that specify its own shape. These parameters are referred to 

as hyper-parameters. 

Generally, the Square-Exponential (SE) kernel, also known as the Radial Basis 

Function (RBF) kernel [9,10], is chosen as a basic kernel function. In reality, the SE 

kernel is favored in most Gaussian process applications, because it requires the 

calculation of only a few parameters. Moreover, there is a theoretical reason to choose 

this method, as it is a universal kernel appropriate for any continuous function when 

enough data is given. The formula for SE kernel is described as follows: 

����, ��� = ����− �� − �′��
2�� � (4) 

in which, σf is the output-scale amplitude and l is the time-scale of the variable x from 

one moment to the next. l also stands for the bandwidth of the kernel and, thereby, the 

smoothness of the function in the model. In addition, l also plays the role of 

judgement for Automatic Relevance Detection (ARD) [11,12], to discard the 

irrelevant input dimension. In the next step, we evaluate the posterior distribution of 

the Gaussian process. Assuming that the incoming value of the input data is (x*, y*), 

the joint distribution of the training output is y, and the test output is y*, as below. 

� � �
�∗� = 	
 � ����

���∗� , ���, �′����, �∗�
���∗, �����∗, �∗�  (5) 

here, K(x*,x*)=k(x*,x*), K(x,x*) is the column vector made from k(x1,x*), 

k(x2,x*)...,k(xn,x*). In addition, K(x*,x) = K(x,x*)
T is the transposition of K(x,x*). 
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Subsequently, the posterior distribution over y* can be evaluated with the below mean 

m* and covariance C*. 

�∗ = ���∗� + ���∗, �����, ���"#�� − ����� (6) 

$∗ = ���∗, �∗� − ���∗, �����, ���"#���, �∗� (7) 

then 

���∗� ~ 	
��∗, $∗� (8) 

The best estimation for y* is the mean of this distribution: 

In addition, the uncertainty of the estimation is captured in the variance of the 

distribution as follows: 

3.   Performance Evaluation 

Table 1.  System configuration. 

 

 Configuration 

Platform 64bit 

CPU Intel Core i7-3770, 3.40GHz, Quad core 

Storage 800GB 

Memory 16GB 

OS CentOS 6.5 

kernel: 2.6.32-431.el6.x86_64 

Benchmark stress-1.0.4 

Power stat powerstat-0.01.30-1 

System stat sysstat-9.0.4-27.el6 

 

3.1   Experiments 

For the performance evaluation, our experiments are aimed at investigating the 

performance of the proposed application in terms of energy efficiency and execution 

time. In the initial experiments, the workload is generated via the CPU intensive 

benchmark for one hour to determine the energy savings. In this test, in order to more 

easily control the number and the intensiveness of the workload, a benchmark 

software, namely stress-1.0.4, is used to simulate the incoming processes. To 

aggregate the results, the powerstat and the sysstat software are used to log the power 

consumption and workload statistics, respectively. All of the information of the 

benchmarking system is described in Table 1. 

�∗ = ���∗, �����, �′�"#� (9) 

%&'��∗� = ���∗, �∗� − ���∗, �����, �′�"#���, �∗� (10) 
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3.2   Results 

As seen in the Fig.2a, both systems begin with the stand-by mode, which costs 91.49 

watts to maintain. Both systems had simultaneous stress tests for duration of 60 

minutes. Subsequently, the system with energy saving enabled ends the benchmark 

test with a consumption of 154.93 watts, in comparison with 177.96 watts for the 

regular system. Therefore, 23.03 watts are saved (which is equivalent to an energy 

savings of 12.94%) (Fig.2b). In processor architecture, an energy reduction of 12.94% 

is significant. 

4    Conclusion 

The proposed method proves the capability in improving the power consumption of 

the computing node. To do that, the strategy is to predict the utilization of CPU cores, 

migrate the target processes and stand-by the idle cores to save the energy. For further 

development, as previously mentioned, some parts of the source code that are 

developed to test this method would be made available under the terms of the GNU 

general public license (GPL). 
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(a) Power consumption over one hour 

running time (lower is better). 

(b) Power saving over one hour 

running time. 

Fig.2 Performance evaluation of proposed method. 
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Development of General-Purpose OS and Virtualization Technology to Reduce 30% 

of Energy for High-density Servers based on Low-power Processors). 
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