
EAP: Energy-Awareness Predictor in Multicore CPU

Dinh-Mao Bui
1
, Thien Huynh-The

1
, YongIk Yoon

2
, SungIk Jun

3
, Sungyoung Lee

1

1 Computer Engineering Department, Kyung Hee University, Suwon, Korea

{mao, thienht, sylee}@oslab.khu.ac.kr
2 Department of Multimedia Science, SookMyung Women’s

University, Seoul, Republic of Korea

yiyoon@sm.ac.kr
3 HPC system research section/Cloud computing department/ETRI, Daejeon, Korea

sijun@etri.re.kr

Abstract. To deal with inference and reasoning problems, Gaussian process has

been considered as a promising tool due to the robustness and flexibility

features. Especially, solving the regression and classification, Gaussian process

coupling with Bayesian learning is one of the most appropriate supervised

learning approaches in terms of accuracy and tractability. Because of these

features, it is reasonable to engage Gaussian process for energy saving purpose.

In this paper, the research focuses on analyzing the capability of Gaussian

process, implementing it to predict CPU utilization, which is used as a factor to

predict the status of computing node. Subsequently, a migration mechanism is

applied so as to migrate the system-level processes between CPU cores and turn

off the idle ones in order to save the energy while still maintaining the

performance.

Keywords: Proactive prediction, Bayesian learning, Gaussian process, energy

efficiency, CPU utilization

1 Introduction

Research in energy consumption is one of the hot trends in recent years. From time to

time, this topic has been the major issue in most of the computing systems. Coming

up with the higher performance that the computing node achieves, a large amount of

energy is also taken in to account as significant costs. Theoretically, energy is used to

conduct the computation, especially in servers. When the servers are up and running,

even when they are idle, the energy is still wasted to maintain the power-on status.

For that reason, enhancing the energy efficiency in computing system concerns

reducing the energy waste on idle computing facilities. However, this effort is

challenged by the problem to concurrently maintain the performance.

In this paper, we propose a proactive solution for energy saving in CPU level. By

applying the prediction technique which is the Gaussian process regression, the

energy application predicts the multicore CPU utilization and activates the process

migration between the cores in order to achieve the overall energy efficiency while

maintaining a high performance.

2 Dinh-Mao Bui, Thien Huynh-The, YongIk Yoon, SungIk Jun and Sungyoung Lee

This paper is organized as follows. We detail our energy efficiency approach in

Section 2. In Section 3, we conduct the performance evaluation of the energy saving

application. Our conclusion is summarized in Section 4.

2 Proposed Method

2.1 Target process

The energy efficiency architecture for a multi-cores CPU is proposed in this section

and described in detail in Fig.1. Basically, the purpose of this architecture is to pro-

actively reduce the energy consumption of the CPU cores. Thus, the main

functionality of this application is to empty the workload of the CPU cores and then

deactivate or stand-by the idle cores to save energy. To do this effectively, the

migration procedure on the Migrator component needs the predictive information of

the CPU core utilization to determine the source and the destination in order to

migrate the target process (from this point, the system process being considered

migration will be known as the target process). Primarily based on the current value

of the CPU core's utilization, known as the heart-beat, the predictive utilization is

calculated in the Utilization Predictor component and plays a critical role in

subsequent decision making.

 2.2 Prediction model

In our application, the object of the prediction is to anticipate the utilization of the

CPU cores. Bayesian learning and Gaussian [1,2,3,4] process regression are employed

as the inference technique and probability framework, respectively. Because the input

data for this model is the time series utilization [5], curve-fitting is preferred over

Fig.1 The architecture of energy saving application.

EAP: Energy-Awareness Predictor in Multicore CPU 3

function mapping for the mapping approach. It is important to note that the curve-

fitting is more flexible with regard to the time series data and non-stationary model.

Assuming that the input data is a limited collection of time location x=[x1, x2, x3,…xn],

a finite set of random variable Y=[Y1, Y2, Y3,…Yn] represents the corresponding joint

Gaussian distribution of incoming processes with regard to the time order. This set

over the time constraint actually forms up the Gaussian process:

���|�� ~ 	
�����, ��, �′�� (1)

with

���� = ������� (2)

and

��, ��� = ������� − ����������� − ���′��� (3)

in which, m(x) is the mean function, evaluated at the location x variable, and k(x,x') is

the covariance function, also known as the kernel function[6,7,8]. By definition, the

kernel function is a positive-definite function, used to define the prior knowledge of

the underlying relationship. Basically, the kernel function is only a mandatory

requirement when there is a lack of finite dimensional form of the feature space.

Otherwise, it can be dropped by directly calculating the sample. However, this feature

space dimension is frequently infinite, which means that the kernel function cannot be

directly calculated. For this reason, the kernel function technique is often chosen to

tackle the Gaussian process regression. In addition, the kernel function comprises

some special parameters that specify its own shape. These parameters are referred to

as hyper-parameters.

Generally, the Square-Exponential (SE) kernel, also known as the Radial Basis

Function (RBF) kernel [9,10], is chosen as a basic kernel function. In reality, the SE

kernel is favored in most Gaussian process applications, because it requires the

calculation of only a few parameters. Moreover, there is a theoretical reason to choose

this method, as it is a universal kernel appropriate for any continuous function when

enough data is given. The formula for SE kernel is described as follows:

����, ��� = ����− �� − �′��
2�� � (4)

in which, σf is the output-scale amplitude and l is the time-scale of the variable x from

one moment to the next. l also stands for the bandwidth of the kernel and, thereby, the

smoothness of the function in the model. In addition, l also plays the role of

judgement for Automatic Relevance Detection (ARD) [11,12], to discard the

irrelevant input dimension. In the next step, we evaluate the posterior distribution of

the Gaussian process. Assuming that the incoming value of the input data is (x*, y*),

the joint distribution of the training output is y, and the test output is y*, as below.

� � �
�∗� = 	
 � ����

���∗� , ���, �′����, �∗�
���∗, �����∗, �∗� (5)

here, K(x*,x*)=k(x*,x*), K(x,x*) is the column vector made from k(x1,x*),

k(x2,x*)...,k(xn,x*). In addition, K(x*,x) = K(x,x*)
T is the transposition of K(x,x*).

4 Dinh-Mao Bui, Thien Huynh-The, YongIk Yoon, SungIk Jun and Sungyoung Lee

Subsequently, the posterior distribution over y* can be evaluated with the below mean

m* and covariance C*.

�∗ = ���∗� + ���∗, �����, ���"#�� − ����� (6)

$∗ = ���∗, �∗� − ���∗, �����, ���"#���, �∗� (7)

then

���∗� ~ 	
��∗, $∗� (8)

The best estimation for y* is the mean of this distribution:

In addition, the uncertainty of the estimation is captured in the variance of the

distribution as follows:

3. Performance Evaluation

Table 1. System configuration.

 Configuration

Platform 64bit

CPU Intel Core i7-3770, 3.40GHz, Quad core

Storage 800GB

Memory 16GB

OS CentOS 6.5

kernel: 2.6.32-431.el6.x86_64

Benchmark stress-1.0.4

Power stat powerstat-0.01.30-1

System stat sysstat-9.0.4-27.el6

3.1 Experiments

For the performance evaluation, our experiments are aimed at investigating the

performance of the proposed application in terms of energy efficiency and execution

time. In the initial experiments, the workload is generated via the CPU intensive

benchmark for one hour to determine the energy savings. In this test, in order to more

easily control the number and the intensiveness of the workload, a benchmark

software, namely stress-1.0.4, is used to simulate the incoming processes. To

aggregate the results, the powerstat and the sysstat software are used to log the power

consumption and workload statistics, respectively. All of the information of the

benchmarking system is described in Table 1.

�∗ = ���∗, �����, �′�"#� (9)

%&'��∗� = ���∗, �∗� − ���∗, �����, �′�"#���, �∗� (10)

EAP: Energy-Awareness Predictor in Multicore CPU 5

3.2 Results

As seen in the Fig.2a, both systems begin with the stand-by mode, which costs 91.49

watts to maintain. Both systems had simultaneous stress tests for duration of 60

minutes. Subsequently, the system with energy saving enabled ends the benchmark

test with a consumption of 154.93 watts, in comparison with 177.96 watts for the

regular system. Therefore, 23.03 watts are saved (which is equivalent to an energy

savings of 12.94%) (Fig.2b). In processor architecture, an energy reduction of 12.94%

is significant.

4 Conclusion

The proposed method proves the capability in improving the power consumption of

the computing node. To do that, the strategy is to predict the utilization of CPU cores,

migrate the target processes and stand-by the idle cores to save the energy. For further

development, as previously mentioned, some parts of the source code that are

developed to test this method would be made available under the terms of the GNU

general public license (GPL).

5 Acknowledgements

This work was supported by Institute for Information & communications Technology

Promotion(IITP) grant funded by the Korea government(MSIP) (No.R0101-15-237,

(a) Power consumption over one hour

running time (lower is better).

(b) Power saving over one hour

running time.

Fig.2 Performance evaluation of proposed method.

6 Dinh-Mao Bui, Thien Huynh-The, YongIk Yoon, SungIk Jun and Sungyoung Lee

Development of General-Purpose OS and Virtualization Technology to Reduce 30%

of Energy for High-density Servers based on Low-power Processors).

References

[1] Lawrence, N. D. (2004). Gaussian process latent variable models for visualisation

of high dimensional data. Advances in neural information processing systems, 16(3),

329-336.

[2] Rasmussen, C. E. (1996). Evaluation of Gaussian processes and other methods for

non-linear regression (Doctoral dissertation, University of Toronto).

[3] Chalupka, K., Williams, C. K., & Murray, I. (2013). A framework for evaluating

approximation methods for Gaussian process regression. The Journal of Machine

Learning Research, 14(1), 333-350.

[4] Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine

learning. the MIT Press, 2(3), 4.

[5] Brahim-Belhouari, S., & Vesin, J. M. (2001). Bayesian learning using Gaussian

process for time series prediction. In Statistical Signal Processing, 2001. Proceedings

of the 11th IEEE Signal Processing Workshop on (pp. 433-436). IEEE.

[6] Roberts, S., Osborne, M., Ebden, M., Reece, S., Gibson, N., & Aigrain, S. (2013).

Gaussian processes for time-series modelling. Philosophical Transactions of the

Royal Society of London A: Mathematical, Physical and Engineering Sciences,

371(1984), 20110550.

[8] Petelin, D., & Kocijan, J. (2014, June). Evolving Gaussian process models for

predicting chaotic time-series. In Evolving and Adaptive Intelligent Systems (EAIS),

2014 IEEE Conference on (pp. 1-8). IEEE.

[9] Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without

the agonizing pain.

[10] Grande, R. C., Chowdhary, G., & How, J. P. (2013, December). Nonparametric

adaptive control using Gaussian Processes with online hyperparameter estimation. In

Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on (pp. 861-867).

IEEE.

[11] Banerjee, A., Dunson, D. B., & Tokdar, S. T. (2012). Efficient Gaussian process

regression for large datasets. Biometrika, ass068.

[12] Hensman, J., Fusi, N., & Lawrence, N. D. (2013). Gaussian processes for big

data. arXiv preprint arXiv:1309.6835.

