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ABSTRACT

In this paper, we go beyond the problem of recognizing hu-
man interactions using videos collected from CCTV-based
surveillance systems. We propose an approach that per-
mits to deeply describe common person-person activities in
the daily life based on the human poses. The joint coor-
dinates of detected human objects are first located by an
impressive articulated-body estimation algorithm using the
tree graphical structure technique. The relational features
consisting of the intra and inter-person feature describing
the joint distance and angle information are used for de-
scribing the relationships between body components of the
individual persons and the interaction of two participants.
Moreover, the interaction is also considered in the spatio-
temporal dimension in order to upgrade the discrimination
among complex activities having much homothetic represen-
tation. We validate our interaction recognition method on
two practical datasets, the BIT-Interaction dataset and the
UT-Interaction dataset, using the multi-class Support Vec-
tor Machine technique. The experimental results demon-
strate that the proposed approach using pose-body features
outperforms recent interaction recognition approaches in the
term of classification accuracy.

Categories and Subject Descriptors

Computing methodologies [Computer Vision]: Activity
recognition and understanding
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active Activity Recognition.

1. INTRODUCTION
In recent years, human activity recognition has been an

interesting research field in computer vision and artificial
intelligence because of wide range of potential applications
in indoor-outdoor surveillance and human-computer inter-
action [1]. Although received more attentions from com-
munity, proposing an efficient method for recognizing ac-
tivities in the real environment still remains a challenging
problem due to the large variations of human appearance
and other issues, such as mutual occlusion and object in-
teraction. Most existing approaches exploit the low-level
features as local spatio-temporal features instead of the hu-
man body skeleton for representing observed activities due
to the restriction of pose estimation performance, however,
some recently impressive researches of human pose compu-
tation bring an opportunity for improving recognition accu-
racy rate.

In computer vision field, human activities can be cate-
gorized into the single action and group action. Many re-
searches were introduced for recognizing activities of one ac-
tor as walking, jogging, running, hand waving [21], besides
the daily life activities in the indoor environment as eating,
drinking, typing, and answering phone [14]. Group action,
generally performed by visual separable people with compli-
cated interactions, such as walking together, approaching,
and gathering, has been investigated using human-based fea-
tures and movement information for detection and recogni-
tion [2, 3]. Few works faces with complex interactive activ-
ities, such as hand shaking, hugging, punching, and patting
[9], in which object relations should be described for activity
representation through discriminative and robust features.

In this work, we present a method for human interaction
recognition using the body-pose features extracted in the
spatio-temporal dimension. Locating human articulation is
performed by an impressive algorithm of pose estimation
[22] on detected human objects in a scene. For represent-
ing interactions, the spatio-temporal relation features, calcu-
lated from the datatset of articulated-pose coordinate, are
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Figure 1: The work flow of a proposed interaction recognition method using spatio-temporal relation features
and topic model. The joint coordinates were achieved by using Yang’s estimation algorithm on each detected
human object. The spatio-temporal relation feature consisting of joint distance and angle between pairs of
joints was then extracted. Finally, interactive activities were classified by a Multi-class SVM.

proposed to use, which include the intra and inter-person
features of joint distance and angle metric. These features
describe the relationships between body components of sin-
gle persons and interacting participants. Capturing object
relationships between the current frame and the previous
frame provides more useful knowledge for distinguishing ho-
mothetic activities in visualization. Support Vector Machine
(SVM) method is finally applied for solving the multi-class
classification problem.

2. RELATED WORK

2.1 Human Pose Estimation
Human pose estimation has an important role in the hu-

man activity recognition, in which the articulated-pose co-
ordinates or the body part areas are provided corresponding
to each human object in the still images. One of most used
techniques is the spatial structure coding, often described
by the probabilistic graphical model. Although structural-
based graphical model allows for inferring efficient body
parts, it sometimes fails in locating body parts. Based on the
pictorial structure model introduced by Fischler et al. [8],
Huttenlocher et al. [7] presented an object as a collection of
arranged parts in a deformable configuration. Eichner et al.
[5] focused on improving the estimation accuracy for unusual
poses by exploiting the latent relationships between the ap-
pearance of different body parts from annotated images.
Body parts were plugged into any pictorial structure engines
using learned appearance models. A shape-based kernel for
upper-body pose similarity and a leave-one-out loss function
were further developed for learning task. In recent years, a
general and flexible mixture model introduced by Yang et
al. [22] using the standard pictorial structure model cap-
tured the spatial relations between part positions and the
co-occurrence relations between part mixtures. Most RGB-
based pose estimation approaches have been restricted in
component identifying and locating due to variations of ap-
pearance, mutual occlusion, and among others.

2.2 Features For Activity Representation
Based on the feature type criteria, activity recognition

approaches are categorized into two groups: local spatio-
temporal interest point (STIP) [4, 19, 18, 17] and body-
pose feature [21, 24, 13, 20]. Local feature-based approaches
have shown practical limitations of non-robustness in dy-
namic scenes, low recognition accuracy with complex activ-

ities, and poor relation description in interactions. Wu et
al. [19] took advantage of the interest point detector, pro-
posed by Dollar et al.[4], including 2D Gaussian filter and
1D Gabor filter to produce a high response at each detected
point. Some well-known feature descriptors were usually ap-
plied for feature extraction, such as Histogram of Oriented
Gradients (HOG), Histogram of Optical Flow (HOF), and
Scale-Invariant Feature Transform (SIFT), Features From
Accelerated Segment Test (FAST), and Motion-Constrained
SIFT (MoSIFT). A novel feature based on 3D Haar wavelet
transform was suggested by Samanta et al. [17] for space-
time interest points to restrict outliers from the feature ex-
traction process. Compared with STIP-based approaches,
pose-based methods proved the advantage and flexibility in
recognizing complex actions and interactions, however, the
recognition accuracy mostly depends on the pose estimation
results. Different from usual approaches in separating the
pose estimation and the action recognition stage, Yang et al.
[21] trained an integrated fashion system that jointly con-
sidered poses and actions to directly obtain the pose infor-
mation. Poselet Activation Vector in [24] consisted of pose
information was combined with contextual information for
learning the poselet-based action classifier. Extensive pyra-
midal feature (EPF), constructed from three components of
the Gabor filter, Gaussian pyramid, and wavelet transform,
was proposed for describing poses by Liu et al. [13]. A pose
dictionary established by shape of contour points from the
human silhouette was formulated by Cai et al. [20] for the
task of activity recognition.

3. METHODOLOGY
The proposed interaction recognition method consists of

the articulated-body estimation, spatio-temporal relation fea-
ture extraction, and classification module as Figure 1.

3.1 Articulated-body estimation
In this work, an impressive articulated-body estimation

algorithm, introduced by Yang et al. [22], is used for locat-
ing the body joint coordinates of detected human objects.
The human key points were modeled into a tree graphical
structure, and a score function was the formulated to flex-
ibly detect human and search poses efficiently in images.
The full core function is formulated based on a compatibility
function and a configuration of part types and positions, in
which a compatibility function is a sum of local and pairwise
scores. Based on capturing dependence information of local
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Figure 2: Interactive activities: punching and push-
ing contain one person with the same pose.

(a) (b)

Figure 3: An illustration of articulated-body esti-
mation using the Yang’s algorithm: (a) 14-joint pat-
tern, (b) 26-joint pattern.

appearance on the spatial geometry, Yang’s model showed
the higher speed and accuracy in the estimation task when
compared with classic articulation models on the real-life
datasets.

In order to boost the performance of articulated joint lo-
cating, multiple pose estimators are trained on the testing
dataset hereafter to control variance among activities. In
the training stage, samples of a particular activity are cho-
sen as positive samples and remainders as negative samples.
Therefore each estimator is tried one by one to select the
best result with the maximum score in the testing stage.
By this strategy, the estimation accuracy is fairly improved.
An example for articulation estimation with 14-joint and 26-
joint pattern is shown in Figure 3. The dataset of 2D joint
coordinates of detected objects in frames is obtained as the
output of this stage.

3.2 Body-Pose Feature Extraction
In the interaction, the human poses should be discrimi-

nated on different activities. The pose of individual human
object are good enough for recognizing actions of a single
person, however, for the task of interaction recognition, the

relations between two objects have to be exploited due to the
pose sharing. In the UT-Interaction dataset [16], Punching
and Pushing, which have one human object in the stand-
ing pose and another in the acting pose as illustrated in
Figure 2, should be represented through the active poses
and the object-object relations. Moreover, observing these
objects in the temporal dimension gives more expensive in-
formation about the pose translation. The spatio-temporal
relation features are therefore studied from the pose coor-
dinate dataset. The authors calculate the distance of two
joints and angle of joint vector and horizontal axis. Figure
4 describes eight feature types extracted from two objects.

Intra-spatio joint distance: The joint distance feature (see
Figure 4a) is defined as the Euclidean distance between a
pair of two joints for each human object in a frame; therefore
calculated as follows:

dX (i, j, t) =
∥

∥p
t
i,X − p

t
j,X

∥

∥ (1)

where pti,X ∈ ℜ2 is coordinate of joint i belongs to the human

object X at the time t ∈ T corresponding to the tth frame.
Intra-spatio joint angle: The joint angle feature (see Fig-

ure 4b) is defined as the angle between the joint vector −−→pipj

and the horizontal axis
−→
Ox:

ϕX (i, j, t) = ∠

(

−−−−−→
p
t
i,Xp

t
j,X ,

−→
Ox

)

(2)

Inter-spatio joint distance: The inter-spatio joint distance
feature (see Figure 4c) is calculated by Eq. 1, where joints
belong to different objects. Particularly, it is measured as
follows:

dXY (i, j, t) =
∥

∥p
t
i,X − p

t
j,Y

∥

∥ (3)

where
{

pti,X , ptj,Y
}

∈ ℜ2 are the 2D location coordinates of
joint i belongs to the human object X and joint i belongs
to the human object Y at the tth frame.

Inter-spatio joint angle: The inter-spatio joint angle fea-
ture (see Figure 4d) is developed from Eq. 2 for two objects:

ϕXY (i, j, t) = ∠

(

−−−−−→
p
t
i,Xp

t
j,Y ,

−→
Ox

)

(4)

Intra-temporal joint distance: The intra-temporal joint
distance (see Figure 4e) represents the Euclidean distance
between pair of joints belonging to one human object at the
current tth frame and the previous (t− t0)

th frame:

dX (i, j, t− t0, t) =
∥

∥p
t−t0
i,X − p

t
j,X

∥

∥ (5)

where t0 indicates the time length which is also understood
as the number of frames.

Intra-temporal joint angle: The intra-temporal joint angle
(see Figure 4f) describes the angle between the joint vector
−−−−→
p
t−t0
i ptj and the horizontal axis:

ϕX (i, j, t− t0, t) = ∠

(

−−−−−−→
p
t−t0
i,X p

t
j,X ,

−→
Ox

)

(6)

Inter-temporal joint distance: The inter-temporal joint
distance (see Figure 4g) formulates the Euclidean distance
between pairs of joints belonging to two different objects at
different frames:

dXY (i, j, t− t0, t) =
∥

∥p
t−t0
i,X − ptj,Y

∥

∥

dYX (i, j, t− t0, t) =
∥

∥p
t−t0
i,Y − ptj,X

∥

∥

(7)
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Figure 4: Illustrations of extracted features using the joint coordinate dataset: (a) Intra-spatio joint distance,
(b) Intra-spatio joint angle, (c) Inter-spatio joint distance, (d) Inter-spatio joint angle, (e) Intra-temporal joint
distance, (f) Intra-temporal joint angle, (g) Inter-temporal joint distance, (h) Inter-temporal joint angle.

where dXY (i, j, t− t0, t) is the distance between joint i of

the object X at the (t− t0)
th frame and joint j of the ob-

ject Y at the current frame while an opposite case with
dY X (i, j, t− t0, t).

Inter-temporal joint angle: Similarly, the inter-temporal
joint angle (see Figure 4h) expresses the angle features be-
tween two different objects in different frames:

ϕXY (i, j, t− t0, t) = ∠

(

−−−−−−→
p
t−t0
i,X pti,Y ,

−→
Ox

)

ϕY X (i, j, t− t0, t) = ∠

(

−−−−−−→
p
t−t0
i,Y pti,X ,

−→
Ox

) (8)

Due to the difference in unit, distance and angle features
have to be normalized when merging them for recognition.
The normalization process is executed as follows:

d̂ = (d− dmin)/(dmax − dmin)
ϕ̂ = ϕ/2π

(9)

All features are absolutely summarized and categorized
into classes of feature types and dimensions as shown in Ta-

ble 1, where the terms in categories are identified as follows:

DS
X =

{

d̂ (i, j, t)
∣

∣i ∈ Xt, j ∈ Xt, i 6= j
}

DS
Y =

{

d̂ (i, j, t)
∣

∣i ∈ Y t, j ∈ Y t, i 6= j
}

DS
XY =

{

d̂ (i, j, t)
∣

∣i ∈ Xt, j ∈ Y t
}

DT
X =

{

d̂ (i, j, t− t0, t)
∣

∣i ∈ Xt−t0 , j ∈ Xt
}

DT
Y =

{

d̂ (i, j, t− t0, t)
∣

∣i ∈ Y t−t0 , j ∈ Y t
}

DT
XY =

{

d̂ (i, j, t− t0, t)
∣

∣i ∈ Xt−t0 , j ∈ Y t
}

DT
Y X =

{

d̂ (i, j, t− t0, t)
∣

∣i ∈ Y t−t0 , j ∈ Xt
}

ΦS
X =

{

ϕ̂ (i, j, t)
∣

∣i ∈ Xt, j ∈ Xt, i 6= j
}

ΦS
Y =

{

ϕ̂ (i, j, t)
∣

∣i ∈ Y t, j ∈ Y t, i 6= j
}

ΦS
XY =

{

ϕ̂ (i, j, t)
∣

∣i ∈ Xt, j ∈ Y t
}

ΦT
X =

{

ϕ̂ (i, j, t− t0, t)
∣

∣i ∈ Xt−t0 , j ∈ Xt
}

ΦT
Y =

{

ϕ̂ (i, j, t− t0, t)
∣

∣i ∈ Y t−t0 , j ∈ Y t
}

ΦT
XY =

{

ϕ̂ (i, j, t− t0, t)
∣

∣i ∈ Xt−t0 , j ∈ Y t
}

ΦT
Y X =

{

ϕ̂ (i, j, t− t0, t)
∣

∣i ∈ Y t−t0 , j ∈ Xt
}

(10)

3.3 Classification
To solve the N-class pattern recognition problem, the au-

thors utilize the Binary Tree of SVM [6], or BTS for abbre-
viation, in which each node in the tree produces a binary
decision using the original SVM. Based on the recursively
dividing the classes into two disjoint groups in every node
of the decision tree, the group of unknown sample should be
assigned by the SVM classifier. In the training phase, BTS
has N − 1 binary classifiers (N is the number of classes)
while it requires only log4/3

(

N+3
4

)

binary tests on average to
make a decision. An essential contribution of the BTS-SVM
approach, the multiclass issue, is mapped into binary-tree
architectures without performance reduction.



Table 1: Category Of Extracted Features

Feature Category Term
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T
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Bowing Boxing Hand Shaking High-five

Kicking Patting PushingHugging
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Punching KickingHugging

Pointing PushingHand Shaking
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Figure 5: Two Interaction dataset for evaluation:
(a) BIT-Interaction dataset and(b) UT-Interaction
dataset.

4. EXPERIMENTS AND DISCUSSIONS

4.1 Dataset and Experiment Setup
In this paper, the proposed method is benchmarked on two

well-known interaction datasets, BIT-Interaction dataset [11]
and UT-Interaction dataset [16] .

BIT-Interaction dataset has eight classes of human inter-
active activity comprising Bowing, Boxing, Hand Shaking,
High− five, Hugging, Kicking, Patting, and Pushing as
shown in Figure 5a, with 50 short videos (2 seconds) per
class. Videos are captured in realistic scenes, included in-
door and outdoor environments, with partial occluded body
components, dynamic object movements, and different view-
points in various illumination conditions.

UT-Interaction dataset consists of six interactions asHand

Shaking, Hugging,Kicking, Pointing, Punching and Pushing

as shown in Figure 5b. Each interaction is presented by 10
videos whose lengths are around 1 minute. Totally, there
are 60 videos for six classes provided in the dataset.

In two datasets, the individual human objects in each
frame are extracted by their bounding boxes supported in
dataset owners for articulated-body estimation. This strat-

egy aim is to improve the estimation accuracy and computa-
tional speed because of searching body parts in a segmented
area instead of a whole image. The authors only consider
the 26-joint pattern instead of 14-joint one due to its higher
estimation accuracy [22]. All of the experiments are per-
formed using Matlab 2013a for simulation on a desktop PC
running Windows 7 Operating System with a 2.67-GHz Intel
Core i5 CPU and 4GB of RAM. In the BTS-SVM classifier,
the Radial Basic Function (RBF) kernel is used to set up
for each node of binary classification. The proposed method
and other approaches used for comparison are evaluated us-
ing the 10-fold cross-validation.

4.2 Experiment Results and Discussions
In the first experiment, the authors investigate the pro-

posed method on different feature categories based on the
26-joint pattern. The classification results are reported by
the confusion matrices in Figure 6 for the BIT-Interaction
dataset. Totally, there are eight considered categories: the
spatial distance set, temporal distance set, spatial angle
set, temporal angle set, spatio-temporal distance set, spatio-
temporal angle set, spatial distance-angle set, and tempo-
ral distance-angle set, that are collected from the intra and
inter-object joint distance and angle in the spatial and tem-
poral dimension. In Figure 6a-b representing results of the
distance feature sets, the proposed method achieved a greater
accuracy with the temporal set over the spatial set in most
of activity classes. Compared with the spatial distance set,
the temporal distance set contains more information of pose
translation. This strategy is repeated again on the angle
feature set as showed in Figure 6c-d. These results indicate
that the temporal feature sets contain more relational body-
part information of the object movement. Compared with
distance feature, the angle information between joint pairs
can not deliver a desirable recognition rate (67.75% versus
85.75% for spatial feature sets and 73.25% versus 87.00% for
temporal feature sets in an overall accuracy) because angle
are more sensitive to noise than distance. When merging
distance and angle features following spatial and temporal
dimension, the performance in accuracy is improved with
different grades (see Figure 6e-h). However, it is important
to note that a more expensive computational cost is required
for these merged feature sets. The spatio-temporal distance
feature, the spatial distance-angle feature, and the tempo-
ral distance-angle feature sets have the highest overall accu-
racy values at 88.5%, 88.5%, and 90.0%, respectively, among
eight investigated feature categories. According the confu-
sion matrices, Hugging and Patting are the most confused
activities in all cases. Hugging and Patting are mostly con-
fused with Pushing; and on the contrary, Pushing take the
most misclassifications with Hugging and Patting. These
activities get some challenges in the pose tracking and locat-
ing due to the body-part overlapping. The confusion matri-
ces for the UT-Interaction dataset are shown in Figure 7.
The angle features are not compatible for this dataset with
low accuracy (less than 61.67% and 65.00% for spatial and
temporal angle set, respectively), even if the temporal angle
feature category is applied. Combining distance and angle
features to merging sets in the spatial and temporal dimen-
sion sometimes can not bring the accuracy improvement at
all. Punching and Pushing are confused each other due
to some resemblances of interaction in the beginning and
ending period of activities.
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Figure 6: Confusion matrices of the SVM classifier on the BIT-Interaction dataset with various feature
categories (A1-A8: bowing, boxing, hand shaking, high-five, hugging, kicking, patting, pushing).
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Figure 7: Confusion matrices of the SVM classifier on the UT-Interaction dataset with various feature
categories (B1-B6: hand shaking, hugging, kicking, pointing, punching, pushing).
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Figure 8: Confusion matrices of the SVM classi-
fier using the merged feature category on: (a) BIT-
Interaction dataset, (b) UT-Interaction dataset.

In the second experiment, the proposed method is vali-
dated on two interaction datasets using the merged feature
set (see Table 1) that contained information of joint dis-
tance and angle features extracted in the spatio-temporal
dimension. The confusion matrices of the SVM classifier
are presented in Figure 8. Compared with investigated fea-
ture sets in the first experiment, the proposed method ob-
tains a greater accuracy rate with merged feature sets on the
BIT-Interaction and the UT-Interaction dataset at most in-
teractions. The confusions are still occurred in activities
involving occlusions, such as Hugging, Patting, Punchin,
and Pushing. Although acquires an impressive accuracy,
utilizing the merged feature set degrades the performance
in processing speed.

In this experiment, the authors further make a compari-
son on classification accuracy between the proposed method
with existing impressive interaction recognition methods,
concretely, Lan et al. [12], Yu et al. [23], Ryoo et al. [15],
and Kong et al. [10] on the same datasets. The results
are presented in Table 2 and 3 for the BIT-Interaction and
UT-Interaction dataset, respectively. The results prove that
the proposed method outperforms the compared methods in
most of activities. The action co-occurrence based method,
suggested by Lan et al. [12], integrated the adaptive struc-
ture and the HOG-based action context descriptor for mod-
eling the person-person interaction. However, Lan’s model
was restricted in deeply understanding more complex inter-
active activities which were generally required more tempo-
ral information because of only considering spatial object
relation instead of temporal relations. Based on the dy-
namic bag-of-words technique, Ryoo et al. [15] presented an
impressive methodology for activity prediction and recog-
nition. Although Ryoo’s method was able to quite handle
noisy observations, it got the challenge with overlapping in-
teractions, such as Patting and Pushing because of outliers
from the spatio-temporal feature extraction module [4]. Ex-
tending the work of Ryoo et al. [16], Yu et al. [23] proposed
Pyramid Spatio-Temporal Relationship Match (PSRM) to
combine with Semantic Texton Forest (STFs) for accuracy
improvement. Utilizing Video-FAST interest points brought
a high performance in processing speed, however, they look
corruptible in practical environments containing more dy-
namic motions. This limitation was explained for quite
poor accuracy of Yu’s method at Pushing, Shaking, and

Table 2: Method comparison on BIT dataset
Activity Lan Yu Ryoo Kong Proposed

[11] [22] [14] [9]
Bowing 82 86 88 82 88
Boxing 76 84 88 80 90
Hand shaking 80 80 80 82 92
High-five 88 84 88 94 92
Hugging 88 82 84 94 92
Kicking 82 86 88 80 90
Patting 82 84 80 82 88
Pushing 80 80 76 88 90
Average 82.3 83.3 84.0 85.3 89.0

Table 3: Method comparison on UT dataset
Activity Lan Yu Ryoo Kong Proposed

[11] [22] [14] [9]
Hand shaking 80 100 80 80 90
Hugging 80 80 90 80 90
Kicking 100 70 90 100 90
Pointing 80 100 90 90 100
Punching 70 80 80 90 90
Pushing 70 70 80 90 90
Average 80.0 83.3 85.0 88.3 91.6

Hugging class. The approach proposed by Kong et al. [10]
significantly outperformed previous works. By proposing
high-level descriptors, called interactive phrases, Kong for-
mulated binary semantic relationships between interacting
people with their interaction in [10]. To describe the mo-
tion relationships, each interactive phrase, detected by an
attribute model, was associated with only one attribute be-
longing to people in interactions. Therefore, the challenges
of motion indistinctness and partial occlusion have been
solved based on understanding co-occurrence relationships
between pairs of interactive phrases. However, the limita-
tion is that the method did not consider dependencies of
phrases and attributes in the temporal dimension to lead to
non-perception at Pushing, Patting, and Pointing. Differ-
ent from compared methods, the proposed approach in this
paper calculates joint distance and angle features from data
of body joint coordinate using an impressive articulated-
body estimation to describe intra and inter-person relation
in spatio-temporal dimension.

5. CONCLUSIONS
In this research, we proposed an efficient video-based ac-

tivity recognition method using the body-pose features. An
impressive articulation estimation algorithm is utilized for
body joint coordinate extraction. For describing interactive
activities between detected human objects, the intra- and
inter-person relational features are calculated from coordi-
nate dataset with the joint distance and angle metric. The
interactions are considered not only within a same frame but
also in two consecutive frames for describing pose transla-
tion. The proposed method is investigated and validated on
various feature categories that are grouped following the fea-
ture types. Temporal feature sets provide a greater recogni-
tion accuracy when compared with spatial feature sets; and
distance feature is better than angle feature in the most of
cases. When merging all features including distance and an-



gle in the spatio-temporal relation, our method reports the
best result in classification accuracy. However, the tradeoff
is the higher computational cost required for feature extrac-
tion and classification process. Advanced feature selection
algorithms and dimensional reduction techniques can be ap-
plied without accuracy degradation in the future.
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