
Fuzzy Fault Detection in IaaS Cloud Computing

Dinh-Mao Bui
Computer Engineering

Department
Kyung Hee University

Suwon 446-701, Korea
mao.bui@khu.ac.kr

Thien Huynh-The
Computer Engineering

Department
Kyung Hee University

Suwon 446-701, Korea
thienht@oslab.khu.ac.kr

Sungyoung Lee
Computer Engineering

Department
Kyung Hee University

Suwon 446-701, Korea
sylee@oslab.khu.ac.kr

ABSTRACT
Availability is one of the most important requirements in
the production system. Keeping the level of high availabil-
ity in Infrastructure-as-a-Service (IaaS) cloud computing is
a challenge task because of the complexity of service provid-
ing. By definition, the availability can be maintain by using
fault tolerance approaches. Recently, many fault tolerance
methods have been developed, but few of them focus on the
fault detection aspect. In this paper, after a rigorous anal-
ysis on the nature of failures, we would like to introduce a
technique to identified the failures occurring in IaaS system.
By using fuzzy logic algorithm, this proposed technique can
provide better performance in terms of accuracy and detec-
tion speed, which is critical for the cloud system.

Categories and Subject Descriptors
B.8 [Performance and Reliability]: Reliability, Testing,
and Fault-Tolerance; D.4.5 [Reliability]: Fault-tolerance

General Terms
Algorithms, Reliability

Keywords
Approximate Reasoning, IaaS, Cloud Computing, Fault De-
tection, Fuzzy Logic.

1. INTRODUCTION
Cloud computing is a technology to deliver the infras-

tructure resources such as computation, storage or network
bandwidth over the Internet. This technology is actually
based on the mechanism to elastically allocate the resources.
Subsequently, the users can remotely initiate their services
on-line and pay only for the amount and duration that they
use in reality. The background philosophy for this mech-
anism is the idea of reusability in large-scale system. In
addition, the scalability and the muti-tenancy are also the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IMCOM ’16, January 04-06, 2016, Danang, Viet Nam
© 2016 ACM. ISBN 978-1-4503-4142-4/16/01. . . $15.00

DOI: http://dx.doi.org/10.1145/2857546.2857612

advantages of cloud computing which is transparent to the
users. With these kinds of features, the user can focus more
on the business model instead of managing the underlying
computing resources.

Among the technologies implemented in the cloud com-
puting, the virtualization is one of the most basic things
to build the system. In mechanism, the users access the
physical resources via the virtual machines, which are cre-
ated in the virtualization. These two layers are part of a
three-layer system: physical layer, virtualization layer and
application layer. The multi-layer makes difficult to unify
the management in cloud computing, especially in failures
management [1]. In fact, managing the failures in cloud sys-
tem is considered as a very high complexity duty because of
various kinds of fault sources.

Discussion on fault and fault tolerance is interesting. In-
deed, even the cloud platforms consider a huge amount of
functionalities, none of them is related to fault tolerance or
very basic level of fault tolerance [2]. Clearly, to make an ef-
fective solution dealing with the fault, all kinds of potential
faults should be collected and classified in advance to issue
the corresponding treatment [3]. However, not many studies
concentrate in proposing serious improvement for detecting
the faults in cloud system. Because of that, the objective of
this paper first to analyze the current fault handling solu-
tions in cloud platform. Besides, the sources where the faults
originates from should be also considered thoroughly. After
that, we propose our solution to detect the fault based on
fuzzy logic and conduct the experiment to verify the effec-
tiveness of this solution to the real world IaaS cloud system.

This paper is organized as follows. In Section 2, we pro-
vide a summary of the related works that are relevant to
this topic. We detail the fault classification in Section 3. In
Section 4, we introduce the architecture and fuzzy algorithm
to detect failures in IaaS cloud computing.The performance
evaluation is conducted on Section 5. Our conclusion and
direction for future work are summarized in Section 6.

2. RELATED WORKS
There are two kinds of fault tolerance models which are

reactive and proactive approach [4] [5]. The reactive model
reduces the effects of fault on system after these faults oc-
curred [6]. In the other hand, the proactive model avoids re-
covering from faults by predicting and pro-actively replacing
the suspected component with the other one [7]. In ”Byzan-
tine Fault Tolerance for the Cloud” [8], the authors proposed
an approach based on Byzantine Fault Tolerance (BFT). By
investigating how to use BFT to develop fault and intrusion

tolerant applications, the author design a modular archi-
tecture for BFT replication and build blocks for BFT con-
sensus (configuration for various trust settings). Although
BFT is a effective algorithm in the case of fault tolerance,
the cost paying for redundancy and voters is expensive in
terms of time consumption and computation. Therefore,
this approach might not suitable for cloud computing.

In the research of ”Autonomic Fault Tolerance using HA
Proxy in Cloud Environment” [9], several instances of virtual
machines running the same application are implemented.
When one machine gets troubled, the autonomic fault tol-
erance technique might detect and handle the failure to re-
assure the system reliability and availability. In addition,
the authors also proposed the cloud virtualized system ar-
chitecture using HAProxy for monitoring. However, some
important metrics are missed which then decrease the accu-
racy of fault detection.

Sheheryar Malik et.al. [10] presented a model for result
checking and decision making based on variant algorithm.
By engaging a number of virtual machines (VMs) with the
same configurations as replications, this approach can pro-
vide a high level of reliability. However, there are some
drawbacks. First, the VMs, which belong to different users,
can not have the same configurations. Second, the VMs with
high workload may not pass the reliability test due to the
insufficient resources. This kind of VMs may be wrongly
replaced without saving the working result. Intuitively, this
approach is not a good choice for large-scale and elastic cloud
system.

The next study is ”Towards a scalable, fault-tolerant, self-
adaptive storage for the clouds” [11]. The authors focused on
designing a storage infrastructure based on BlobSeer for the
cloud. Subsequently, a joint architecture was defined with
the global behavior modeling phase. Besides, the author
also provided the Quality of Services to achieve the desired
goals of the storage system. The research partially focused
on creating fault tolerance scheme for cloud’s storage rather
than making a general solution for service providing cloud
system.

In ”Algorithmic-Based Fault Tolerance for Matrix Multi-
plication on Amazon EC2” research, the authors extended
the idea to implement the algorithmic-based fault tolerance
(ABFT) in high performance computing to the cloud. Nev-
ertheless, this algorithm has the drawback of performance
due to its high complexity. This issue actually slows down
the system and is not appropriate for the production cloud
[12].

Lastly, in the research of ”Method of Fault Detection in
Cloud Computing Systems” [13], the authors proposed a de-
tection approach based on C4.5 decision algorithm. This
algorithm is also combined with the characteristics of the
cloud to improve the correctness and the effectiveness. How-
ever, the complexity of C4.5 is quite high (up to O(mn2)),
which might be slow when coping with a large number of
data.

By examining the related works, we have come to the
conclusion that although the research on fault detection ex-
ists, not many researchers have thoroughly considered the
detection method with regards to the characteristics of the
production cloud system. Because of that, there is a need
to develop a low complexity but efficient method to detect
the failures. This is also our motivation to propose the fuzzy
logic based fault detection approach.

3. BACKGROUND

3.1 Cloud system

Figure 1: IaaS Cloud Computing Model.

IaaS cloud service providers tend to satisfy the users in
terms of computing resources and relevances. To do that,
the providers have to consider deploying the resources on a
distributed system to meet the different quality of service
as well as efficiently load balance between clusters. In our
research, we implement the following IaaS cloud computing
model (Figure 1) to cover most of the requirement of service
provider in real world:

• Cloud Balancing Layer: this layer is a combine compo-
nent with a series of filters and authorization system.
With this component, input requests are checked the
validity and be classified. By using the predefined rules
which created by administrator, the requests might
be forwarded, be answered based on the query results
from the cache system or be refused. After classifica-
tion process, the requests will be passed to the appro-
priate servers for load balancing purpose.

• Service Management (SM) Layer: this layer has re-
sponsibility to automate the provisioning cloud resources
by collecting capacity information and redirecting the
virtual machine deployment request.

• Virtualization Management (VSM) Layer: this layer
has responsibility to deploy virtual machine to the
Worker Node. In fact, this layer receives the requests
from the service management layer and chooses the
best worker node which satisfies all constraints for the
VM deployment.

Figure 2: Proposed fault detection architecture.

• Worker Node (WN): this is actually the physical servers.
Many physical servers are put together into clusters.
In each worker node, we implement the abstraction
layer of virtualization by using the hypervisor such as
Hyper-V, XEN or VMware · · ·etc. The hypervisor in-
teracts with physical resources and manages all the
VMs in worker node.

3.2 Failures in IaaS
Fault types are classified according to the positions where

they occur. The fault can come from the physical infrastruc-
ture (worker node failure), from the virtualized infrastruc-
ture (VM failure) or from the virtual infrastructure manager
(orchestrator failure). In the Open Nebula orchestrator [14],
which is chosen to implement, the fault types and the cor-
responding pre-supports are as follows.

• Worker node failure: When a worker node is down,
the pre-defined hook can be dispatched to solve the
problem. Usually, this hook will redeploy the failed
VM to another worker node.

• Virtual machine failure: There are two failure situ-
ations which can occur in virtual machine life cycle:
the VM fails and VM crashes. In the VM fails, the
error in network prevents the image to be copied into
the node. When this situation happens, the VM en-
ters the ’failed’ state. To solve this situation, the same
method to solve the worker node failure is used. In the
VM crash, the physical server sometimes crashes due
to unknown reasons. In this case, a script might be
embedded to restart the VM automatically.

• Orchestrator failure: the orchestrator can recover from

a failures by restarting the core daemon. The run-
ning VMs will be reconnected and run as nothing hap-
pens. In case of the pending VMs, these VMs might
be re-deployed on a suitable host, as well as other non-
transient states. However, VMs not in a final state may
need to be recovered manually.

By default, Open Nebula takes care of any pending clean-up
operation like removing image files or canceling the VM. An
external VM-collector script can be set-up to automatically
recover or delete the VMs when the core of Open Nebula is
restarted after a crash. Although Open Nebula fault toler-
ance is mostly based on reactive policies, it actually supports
to reduce the effect of failures in the worker nodes, in the
VMs and in the core of orchestrator. In the next section, an
architecture enables the proactive fault tolerance policies is
proposed.

4. PROPOSED METHOD
The proposed architecture described in Figure 2 is used

to identify the failures in IaaS cloud computing system. In
this system, there are two types of computing nodes: phys-
ical servers and virtual servers [15]. To handle these nodes,
the architecture is equipped with two components: fault de-
tection and monitoring system. These components are built
independently with the orchestrator [16] [17] [18] and inte-
grated into the IaaS cloud computing system as the plugins.
The functionalities of the architecture is described as follows.

• Monitoring component: this component includes two
applications: Ganglia [19] and HA Proxy [20]. The
main task of this component is to collect system pa-
rameters as the input dataset for the fault detection

Figure 3: Fuzzy response time metric.

process. Ganglia is used to collect the different pa-
rameter values such as CPU usage, RAM usage, disk
I/O...etc. In the other hand, HA Proxy [5] is aimed
to monitor network parameters such as response time,
bandwidth, throughput, request/response ratio...etc.

• Fault Detection Component: the fault detection tech-
nique implemented in this component is based on fuzzy
logic.

The attractive benefit of fuzzy logic algorithm is approx-
imate reasoning with imprecise propositions by using fuzzy
set theory. In fault detection component, the rule form of
fuzzy logic algorithm formulates as below:

Rui : if (X1 is F1i) and · · · and (Xn is Fni) then Y is Gi.
(1)

where Xj , j = 1,. . .,n are called antecedent variables defined
on a domain Uj . Similarly, Y is the consequent variable
defined on a domain V . Each Fji is a linguistic term ex-
pressed by a fuzzy subset over the corresponding Uj . For any
uj ∈ Uj , the degree of membership function µFjiuj shows the
degree to which uj is compatible with the term Fji. Simi-
larly Gi is a linguistic term expressed by means of a fuzzy
subset on V . For any v ∈ V , the degree of membership
function µGi(v) is the degree which v is conformant to the
term Gi.

System parameters collected by Ganglia and HA Proxy
will be used as input data set to identify the problem. The
first step to build fault detection component is to identify the
metrics [21]. Based on studies of performance and network
measurement [22] [23] [24], the most fundamental metrics
can be considered as follows:

• Response time: the time elapsed between the moment
that the node receiving the request to the time that
node returns the response.

• Throughput: the amount of data transfers in a given
unit of time.

• Bandwidth: the bandwidth of computing nodes.

• Resource utilization: the total amount of resources is
actually allocated and served the request.

Because of similarity in reasoning procedure, we would like
to present the estimation process for one metric: the re-
sponse time.

4.1 Response time
Five fuzzy sets are used to describe the value of response

time: very fast, fast, normal, slow, very slow. The value
of input parameter rt determines the value of fuzzy vari-
ables. Figure 3 explains how the determination process is
conducted. Depending on the network status, the value of
fuzzy variable will change from 0 to 1. Trapezoidal member-
ship functions µ are described by parameter rt, (p, q, r, s,
t, u, v, and w are thresholds). These parameters are given
by the expressions below.

µveryfast(rt) =


0 if rt ≥ q
q−rt
q−p

if p ≤ rt < q

1 if rt < p

(2)

µfast(rt) =


0 if (rt < p) or (rt > s)
rt−p
q−p

if p ≤ rt < q
s−rt
s−r

if r ≤ rt < s

1 if q ≤ rt < r

(3)

µnormal(rt) =


0 if (rt < r) or (rt ≥ t)
rt−r
s−r

if r ≤ rt < s
t−rt
t−s

if s ≤ rt < t

(4)

µslow(rt) =


0 if (rt < s) or (rt ≥ v)
rt−s
t−s

if s ≤ rt < t
v−rt
v−u

if u ≤ rt < v

1 if t ≤ rt < u

(5)

µveryslow(rt) =


0 if rt < u
rt−u
v−u

if u ≤ rt < v

1 if rt ≥ v
(6)

After calculating the membership functions involved in fuzzy
process, we locally de-fuzzify by using the functionDcentroid,
which is given by the expression below.

Dcentroid(rt) =

∫ w

0
rtµ(rt)drt∫ w

0
µ(rt)drt

(7)

This local de-fuzzified value is used to evaluate status of the
response time and present this metric into rules.

• Rule rt1: if (Response Time is slow) then (networkProb-
lem is Risk).

• Rule rt2: if (Response Time is very slow) then (net-
workProblem is Danger).

• Rule rt3: if (Response Time is not slow) and (Response
Time is not very slow) then (networkProblem is none).

Because of the similarity in reasoning procedure, other met-
rics such as throughput, bandwidth and resource utilization
can be calculated similarly.

4.2 General approximate reasoning
There is a bit different between physical and virtual servers

in terms of using and providing the services, then the rea-
soning procedure for each case will be quite different. Specif-
ically, the physical servers consider any issue occurring on
the resource utilization as the main reason for several errors,
which subsequently affect the quality of services. These is-
sues need to be marked as failures. For the virtual servers,
the issues of the resource utilization only affect the indi-
vidual clients, then the errors related to this metric might
be marked as problem only and have lower priority than
the other metrics. Similarly, the bandwidth makes a major
influence on the quality of services of virtual servers, this
metric should be considered as an important factor. In or-
der to avoid multi-event affecting the result of reasoning, the
priority of the metrics will be specified as follows.

With physical servers:

1. Resource Utilization

2. Throughput

3. Response Time

4. Bandwidth

With virtual servers:

1. Response Time

2. Throughput

3. Bandwidth

4. Resource Utilization

By the end of the approximate reasoning, the issues causing
the system failure can be identified fairly accurately within
a fast reaction rate.

5. PERFORMANCE EVALUATION
The proposed architecture is implemented and tested on

the datacenter of Vietnam Datacommunication Company
(VDC). The computing system consists of 7 IBM 3650 M3
servers with the following specification: CPU Quad Core
Intel Xeon E5600 series - 2.4GHz - 12M cache, SAS 600
GB, 8GB RAM DDR3, Linux CentOS 5.8. For the cloud
configuration, OpenNebula 2.2 is chosen for the orchestrator
and XEN Hypervisor 4.0.4 is chosen for the hypervisor. This
system hosts 75 to 85 virtual servers from time to time.

The errors consist of four categories: resource utilization,
throughput, response time and bandwidth. These error are
randomly dispatched into the system. In addition to the
implementation of proposed method, the Algorithmic-Based
Fault Tolerance (ABFT) is also implemented for the purpose
of comparison. There are two measurements for the evalua-
tion: the accuracy and the response time of fault detection.

(a) Accuracy statistics in fault detection (higher is better).

(b) Response time statistic in fault detection (lower is better).

Figure 4: Performance evaluation of proposed
method on cloud computing system.

The results are cumulatively calculated after a period of 5
minutes. In the accuracy test, according to Figure 4a the
proposed method scores 13% better than the ABFT by the
end of the experiment. In the response time test, although
the reaction rate is fluctuated, the proposed method is mea-
sured to be 23.4% faster than the ABFT in the best case
(Figure 4b). To summarize, these results are quite good
to trigger the treatments for failures occurring in the cloud
computing system.

6. CONCLUSION
In this research, we introduce a new approach to detect

failures in the IaaS Cloud Computing. With proposed ar-
chitecture, the faults can be classified accurately without
requiring the precise input dataset. Besides, because the
reaction rate is very fast, then the cost paying for this so-
lution is acceptable. For the future works, we might engage
the probabilistic approach to increase the ability of ”self-
decision making” for fault tolerance system.

7. ACKNOWLEDGMENT
This work is supported by the National Research Foun-

dation of Korea (NRF) grant funded by the Korea govern-
ment (MSIP) NRF-2014R1A2A2A01003914 and the Indus-
trial Core Technology Development Program (10049079, De-
velopment of mining core technology exploiting personal big
data) funded by the Ministry of Trade, Industry and Energy
(MOTIE, Korea).

8. REFERENCES
[1] R. Jhawar, V. Piuri, and M. Santambrogio, “Fault

tolerance management in cloud computing: A
system-level perspective,” Systems Journal, IEEE,
vol. 7, no. 2, pp. 288–297, 2013.

[2] ——, “A comprehensive conceptual system-level
approach to fault tolerance in cloud computing,” in
Systems Conference (SysCon), 2012 IEEE
International. IEEE, 2012, pp. 1–5.

[3] K. Lu, R. Yahyapour, P. Wieder, E. Yaqub,
M. Abdullah, B. Schloer, and C. Kotsokalis,
“Fault-tolerant service level agreement lifecycle
management in clouds using actor system,” Future
Generation Computer Systems, 2015.

[4] J. Deng, S. C.-H. Huang, Y. S. Han, and J. H. Deng,
“Fault-tolerant and reliable computation in cloud
computing,” in GLOBECOM Workshops (GC
Wkshps), 2010 IEEE. IEEE, 2010, pp. 1601–1605.

[5] T. K. Singh, G. T. RaviTeja, and P. S. Pappala, “Fault
tolerance-challenges, techniques and implementation in
cloud computing,” International Journal of Scientific
and Research Publications, vol. 3, no. 6, 2013.

[6] Z. Amin, N. Sethi, and H. Singh, “Review on fault
tolerance techniques in cloud computing,”
International Journal of Computer Applications, vol.
116, no. 18, 2015.

[7] Y. Tamura and S. Yamada, “Practical reliability and
maintainability analysis tool for an open source cloud
computing,” Quality and Reliability Engineering
International, 2015.

[8] H. P. Reiser, “Byzantine fault tolerance for the cloud,”
University of Lisbon Faculty of Science, Portugal, at
http://cloudfit. di. fc. ul. pt.

[9] V. Kaushal and A. Bala, “Autonomic fault tolerance
using haproxy in cloud environment,” International
Journal of Advanced Engineering Sciences and
Technologies, vol. 7, no. 2, pp. 222–227, 2011.

[10] S. Malik and F. Huet, “Adaptive fault tolerance in real
time cloud computing,” in Services (SERVICES), 2011
IEEE World Congress on. IEEE, 2011, pp. 280–287.

[11] H.-E. Chihoub, G. Antoniu, and M. Pérez, “Towards a
scalable, fault-tolerant, self-adaptive storage for the
clouds,” in EuroSys’ 11 Doctoral Workshop, 2011.

[12] Y. Tamura and S. Yamada, “Software reliability
analysis considering the fault detection trends for big
data on cloud computing,” in Industrial Engineering,
Management Science and Applications 2015.
Springer, 2015, pp. 1021–1030.

[13] Y. Jiang, J. Huang, J. Ding, and Y. Liu, “Method of
fault detection in cloud computing systems,”
International Journal of Grid and Distributed
Computing, vol. 7, no. 3, pp. 205–212, 2014.

[14] “What is open nebula?”
http://docs.opennebula.org/4.12/index.html, accessed:
2015-08-13.

[15] S. Alrwais, “Behind the scenes of
iaasimplementations.”

[16] S. McIlvenna, M. Dumas, and M. T. Wynn, “Synthesis
of orchestrators from service choreographies,” in
Proceedings of the Sixth Asia-Pacific Conference on
Conceptual Modeling-Volume 96. Australian
Computer Society, Inc., 2009, pp. 129–138.

[17] C. Liu, Y. Mao, J. Van der Merwe, and M. Fernandez,
“Cloud resource orchestration: A data-centric
approach,” in Proceedings of the biennial Conference
on Innovative Data Systems Research (CIDR), 2011,
pp. 1–8.

[18] A. J. Younge, R. Henschel, J. T. Brown,
G. Von Laszewski, J. Qiu, and G. C. Fox, “Analysis of
virtualization technologies for high performance
computing environments,” in Cloud Computing
(CLOUD), 2011 IEEE International Conference on.
IEEE, 2011, pp. 9–16.

[19] “What is ganglia?” http://ganglia.sourceforge.net/,
accessed: 2015-08-13.

[20] “What is ha proxy?” http://www.haproxy.org/,
accessed: 2015-08-13.

[21] X. Wu, Performance Evaluation, Prediction and
Visualization of Parallel Systems, ser. The
International Series on Asian Studies in Computer and
Information Science. Springer US, 1999. [Online].
Available:
http://books.google.co.kr/books?id=IJZt5H6R8OIC

[22] D. G. Feitelson, “The effect of metrics and workloads
on the evaluation of computer systems.”

[23] S. Kounev, “Software performance evaluation,” Wiley
Encyclopedia of Computer Science and Engineering,
2008.

[24] P. Andras, O. Idowu, and P. Periorellis, “Fault
tolerance and network integrity measures: the case of
computer-based systems,” in Symposium on Network
Analysis in Natural Sciences and Engineering, 2006,
p. 3.

