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Abstract—Understanding video-based activities have remained
the challenge regardless of efforts from the image processing and
artificial intelligence community. However, the rapid developing
of computer vision in 3D area has brought an opportunity
for the human pose estimation and so far for the activity
recognition. In this research, the authors suggest an impressive
approach for understanding daily life activities in the indoor using
the skeleton information collected from the Microsoft Kinect
device. The approach comprises two significant components as
the contribution: the pose-based feature extraction under the
spatio-temporal relation and the topic model based learning. For
extracting feature, the distance between two articulated points
and the angle between horizontal axis and joint vector are
measured and normalized on each detected body. A codebook
is then constructed using the K-means algorithm to encode the
merged set of distance and angle. For modeling activities from
sparse features, a hierarchical model developed on the Pachinko
Allocation Model is proposed to describe the flexible relationship
between features - poselets - activities in the temporal dimension.
Finally, the activities are classified by using three different state-

of-the-art machine learning techniques: Support Vector Machine,
K-Nearest Neighbor, and Random Forest. In the experiment, the
proposed approach is benchmarked and compared with existing
methods in the overall classification accuracy.

I. INTRODUCTION

Nowadays, recognizing human activities has many applica-
tions in video surveillance, human - computer interaction, and
health care area. Although achieves more impressive results in
recent years, human activity recognition is still a quite chal-
lenge due to variations of appearance, mutual occlusion, multi-
object interaction. Two important considerations for activity
recognition are the input sensory data and the activity modeling
because they mostly effect to the recognition accuracy and
computational cost. Due to typical limitations of RGB videos
captured from traditional camera for object detection, pose
estimation and activity recognition, the depth camera is there-
fore considered for this study based on impressive advantages.
The complementary information of the depth channel provided
by Kinect brings to a realizable solution to solve remaining
problems in computer vision [1].

Recent studies proposed activity recognition approaches
using the RGB-color videos [2]–[5], however, most of them
were restricted by locating body components. In order to
evaluate the structural similarity between feature categories,
Ryoo et al. [4] designed an impressive spatio-temporal re-
lationship matching algorithm. The algorithm was enable to
detect and localize complex non-periodic activities. Meng et

al. [2] studied a discriminative model to understand complex
activities as the interactions between body components within
a person and those between components belongs to different
objects. The structural connectivity between objects, human
poses, and different body components were validated by a
structure search scheme using the max-margin estimation
algorithm in Yao’s study [5]. By the same way, Kong in
[3] proposed a discriminative pattern to model the interactive
phrases presenting object motion relationships using the Latent
Support Vector Machine (LSVM) technique. Due to neglect-
fulness of temporal dependencies in phrases and attributes,
Kong’s approach thereby may confuse different interactions.

Compared with traditional cameras, depth cameras have
more advantages in handling illumination changes and provide
the extra depth information which motivates and revolutionise
for activity detection and recognition research. Besides gener-
ating a new dataset of interaction, Multiple Instance Learning
(MIL) was proposed by Yun et al. [6] for classification based
on the bag of body-component features, such as joint, plane,
and velocity features. An efficient descriptor involving an
application of a modified Histogram of Oriented Gradient
(HOG) algorithm was represented by Ohn-Bar et al. [7]
for extracting spatio-temporal features from color and depth
images. In Ji’s approach [8], interactive activities were mod-
elled by an impressive body model to connect the interactive
limbs of different human objects together. Redundant action
information was removed by mining essential interactive pairs
and poselets for each interaction class. The classification
was finally employed using SVM technique with the Radial
Basic Function (RBF) kernel on the poselet dictionary. Some
fundamental approaches were presented as the combination of
3D-based feature extraction and machine learning techniques,
for example as SVM [9], K-Nearest Neighbor (K-NN) [10],
Hidden Markov Model (HMM) [11], in which, the body
joint coordinate was provided by Kinect sensor. Maximum
Entropy Markov Model (MEMM), an advanced technique
of HMM, was usually employed for examining recognition
accuracy [12]. A hierarchical system as the integration of
three different learning techniques including K-NN, SVM,
and HMM in the training stage was also recommended by
Gaglio et al. [13] to guarantee an acceptable accuracy, real-
time processing, and low power consumption. Combining key
information from the color channels and the depth channel
was studied to amplify the recognition accuracy. In summary,
due to natural advantages of Kinect sensor, most of existing
3D-based activity recognition methods has achieved a higher
accuracy when compared with other approaches processing on
the RGB domain.978-1-5090-1897-0/16/$31.00 c©2016 IEEE
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Fig. 1. The workflow of the proposed method. The data collected from Kinect is skeleton coordinate of detected object in the scene.

This paper propose a novel approach to recognize indoor
daily life activities using Kinect sensor for collecting skeleton
information. First of all, we calculate the distance between two
joints and the angle between the joint vector and the horizontal
axis on detected body. Extracted features describe the rela-
tionships between interactive body components of the detected
object in the spatial dimension, the motion of body cannot be
therefore captured for deeper understanding activities in the
long-term activity. Another challenge in studying activity is
similar poselets of different activities. In particular, reading
book and calling phone are two different activities, however,
their appearances are mostly similar with the same posture of
sitting. To overcome those problems, a flexibly hierarchical
topic model is developed on the Pachinko Allocation Model
(PAM) to exhibit the relationship between the feature - poselet
- activity in the multi-frame observation. For preparation of
topic modeling, the extracted features are then mapped into
codewords using the k-means clustering algorithm. Different
with existing approaches mapping each feature, neither dis-
tance nor angle as a codeword, we encode merged features as
a codeword to emphasize posture discrimination. Due to using
the Directed Acyclic Graph (DAG), PAM therefore captures
not only correlations among features, but also correlations
among poselets and activities. In the final stage, one technique
among SVM, K-Nearest Neighbor (K-NN), and Random For-
est (RF) is employed for classification task. Besides proposing
activity recognition approach, we furthermore introduce a new
dataset comprising eight daily life activities recorded by Kinect
sensor.

II. THE METHODOLOGY

The activity recognition approach proposed in this paper
has the main following modules: skeleton acquisition, feature
extraction, codebook construction, topic modeling, and classi-
fication as shown in Fig. 1.

A. Skeleton Acquisition

Although Kinect sensor provides 25 joints on each body
as illustration shown in Fig. 2 1, only 15 key joints have been
selected in several common datasets, such as, Florence 3D
actions [14] and SBU Kinect Interaction Dataset [6] to reduce
the information capacity without accuracy decrement. Some
less important joints in action recognition can be omitted:
spinebase, neck, handleft, handright, footleft, footright, handti-
pleft, handtipright, thumbleft, thumbright. Kinect for Windows
v2 fundamentally supports to track depth channel and body-
frame channel at 30 fps with 512× 424 of resolution.

1https://vvvv.org/documentation/kinect

Fig. 2. A 25-joint skeleton for each body provided by Kinect sensor.

B. Feature Extraction

From the skeleton coordinate dataset, we describe an object
appearance by the distance between two joints and the angle
metric between the horizontal axis and the joint vector.

Joint distance: The feature is defined as the Euclidean
distance between two arbitrary joints and calculated as follows:

d (i, j, t) = ‖pi,t − pj,t‖

=

√

(xi,t − xj,t)
2 + (yi,t − yj,t)

2 + (zi,t − zj,t)
2

(1)

where pi,t = {xi,t, yi,t, zi,t} ∈ ℜ3 are the 3D location
coordinates of the joint i and j of a detected body at time t ∈ T
corresponding to tth frame. The distance feature describing
translation of joints in two consecutive frames is written as
follows:

d (i, j, t− 1, t) = ‖pi,t−1 − pj,t‖ (2)

Joint angle: The feature is identified by the angle between

the horizontal axis
−→
Ox and the joint vector

−→
ij in the plane

z = 0:

α (i, j, t) = 6

(−→
itjt,

−→
Ox

)

= tan−1

(

yj,t − yi,t

xj,t − xi,t

)

(3)

Similarly the angle feature extracted from two joints when
considered in two successive frames is computed by the below
equation:

α (i, j, t− 1, t) = 6

(−−−→
it−1jt,

−→
Ox

)

(4)

With each pair of two joints, we establish a merged feature
consisting of distance and angle:

c (i, j) = {d (i, j) , α (i, j)} ; i 6= j (5)

At the tth frame, totally 210 couple values representing each
detected body are calculated from a simplified skeleton model.
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Fig. 3. Samples of two different activities having the similar pose of sitting:
(a) Reading book, (b) Calling phone.

C. Codebook construction

For the codebook construction, the k-means clustering
algorithm using the Euclidean distance metric is applied to
cluster the extracted feature dataset. Concretely, an element c
in (5) containing information about the joint distance and angle
is considered as a codeword, each body is therefore encoded by
210 codewords. In the k-means clustering, the center of each
cluster is regarded to be a unique codeword. The parameter
k, the number of clusters and also the size of the codebook
(the number of vocabulary words) is set in advance. In the
training stage, a codebook is built with the k clusters centroid
locations. The new features extracted in the testing stage are
mapped to codewords by using the constructed codebook. In
our proposed method, a particular activity observed in several
frames could be offered by the histogram of codewords.

D. Topic modeling

In the previous sections, the spatio-temporal features con-
taining the information of body skeleton within a same frame
and two consecutive frames are computed and mapped to
codewords. They can be fundamentally used for classification
of a short period through common classifiers, however, the
long-term studying needs to be discovered for complex activity,
such as, reading book activity with the pose of sitting (see Fig.
3). In this section, the authors therefore suggest a hierarchical
model based on the Pachinko Allocation Model to establish
the correlation between the sparse feature, individual poselet,
and long-term activity. Due to developed on the arbitrary
Directed Acyclic Graph, PAM is efficient to learn arbitrary,
nested, and possibly sparse activity correlations. PAM is first
introduced with arbitrary DAGs by Li and McCallum [15],
however the four-level hierarchy structure, a special case
with the good tradeoff between complexity and efficiency,
consists of one root topic, m super topics at the second level
H = {h1, h2, . . . , hm}, n subtopics at the third level G =
{g1, g2, . . . , gn} and k codewords at the bottom. According to
the features comprising the joint distance and angle, codewords
generated in the previous stage using the codebook. The super
topic and subtopic correspond to the activities and the poselets,
respectively. The root is associated with activities, the activities
layer are typically associated with poselets, and the poselets
are fully connected to the codewords as shown in Fig. 4(a).
For each frame, the multinomials of the root and activities
are sampled based on the single Dirichlet distribution ξr (δr)
and ξl (δl)|

m
l=1 corresponding to the codewords. The poselets

are modelled with multinomial distributions φgl |
n

l=1 which
are sampled from the Dirichlet distribution ξ (β). Fig. 4(b)
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Fig. 4. Pachinko Allocation Model: (a) Hierarchical topic model (b) Graphic
model.

represents the graphic model of the four-level PAM version
in particular. The notations used in PAM are furthermore
summarized in the Table. I. According this model, a frame as a
document s in the sequence of T frames S = {s1, s2, . . . , sT },
is generated by the following process:

1) Write a multinomial distribution ϑ
(s)
r from a Dirichlet

prior δ
(s)
r for frame s.

2) For each activity hl, write a multinomial distribution

ϑ
(s)
hl

from ξl (δl), where ϑ
(s)
hl

is a multinomial distri-
bution over poselets.

3) Write multinomial distributions φgl |
n

l=1 from a
Dirichlet prior β for each poselet gl.

4) For each codeword w in the current frame s:

• Write an activity hw,s from ϑ
(s)
r .

• Write a poselet gw,s from ϑ
(s)
hw,s

.

• Write a codeword w from φgw,s
.

Following this process, the joint probability of generating the
frame s, the activity assignments h(s), the poselet assignments
g(s), and the multinomial distribution ϑ(s) is calculated as:

P
(

s, g(s), h(s), ϑ(s)
∣

∣ δ, β
)

= P (ϑr| δr)
m
∏

l=1

P
(

ϑ
(s)
hl

∣

∣

∣
δl

)

∏

w

(

P
(

hw|ϑ
(s)
r

)

P
(

gw|ϑ
(s)
gw

)

P (w| φgw )
)

(6)
Integrating out ϑ(s) and summing over h(s) and g(s), the
marginal probability of a scene is written as follows:

P (s| δ, β) =
∫

P
(

ϑ
(s)
r

∣

∣

∣
δr

) m
∏

l=1

P
(

ϑ
(s)
hl

∣

∣

∣
δl

)

∏

w

∑

hw,gw

(

P
(

hw|ϑ
(s)
r

)

P
(

gw|ϑ
(s)
hw

)

P (w|φgw )
)

dϑ(s)

(7)
The probability of the generated corpus S corresponding to
each frame sequence is formulated as follows:

P (S| δ, β) =

∫ n
∏

l=1

P (φgl |β)
∏

s

P (s| δ, β) dφ (8)

The joint distribution of the corpus S and the topic assignments
are given by the below equation:

P (S,H,G |δ, β ) = P (H |δ )P (G |H, δ )P (S |G, β ) (9)



TABLE I. NOTATIONS USED IN THE PAM MODEL

SYMBOL DESCRIPTION

m Number of activities
n Number of poselets
T Number of frames
k Number of unique codewords
ξr (δr) Dirichlet distribution associated with the root

ξl (δl) Dirichlet distribution associated with the lth activity
ξ (β) Dirichlet distribution associated with poselet for distance features
ξ (γ) Dirichlet distribution associated with poselet for motion featurres

ϑ(s)
r The multinomial distribution sampled from ξr (δr) for the root in frame s

ϑ
(s)

hl
The multinomial distribution sampled from ξl (δl) for an activity in frame s

φg The multinomial distribution sampled from ξ (β) for a poselet g
hw,s The activity h associated with the codeword w in the frame s
gw,s The poselet g associated with the codeword w in the frame s

By integrating out the sampled multinomials, each term is
determined as follows:

P (H |δ ) =
∫
∏

s

P
(

ϑ
(s)
r |δr

)

∏

w

P
(

hw

∣

∣

∣
ϑ
(s)
r

)

dϑ

P (G |H, δ ) =
∫
∏

s

(

m
∏

l=1

P
(

ϑ
(s)
hl

|δl

)

∏

w

P
(

gw

∣

∣

∣
ϑ
(s)
hw

)

)

dϑ

P (S |G, β ) =
∫

n
∏

l=1

P (φgl |β )
∏

s

(

∏

w

P (w |φgw )

)

dφ

(10)
The approximate inference result of the condition distribution
which samples the super topic and sub-topic assignments for

each codeword, is obtained by (11), where η
(s)
r is the number

of occurrences of the root r in the document s; η
(s)
l is the

number of occurrences of activity hl in the document s; η
(s)
u

is the number of occurrences of poselet gu in s; η
(s)
lu is the

number of times that poselet gu is sampled from the activity

hl; η
(s)
uv is the number of occurrences of codeword wv in the

poselet hu. The notation −w indicates activity assignments
except word w. The hyper-parameters δ and β can be estimated
via the Gibbs sampling algorithm which is detail formulated
in [15]. The new data by tagging the joint distance and joint
motion features as codewords is generated as the output of
PAM. The probability distribution is obtained as the implicit
poselet - activity - frame sequence matrix by merging the same
codewords in different video contents.

E. Classification

The merged features are viewed as codewords and assigned
to a particular poselet and activity patterns by topic modeling.
The poselet and activity statistics in every frame sequence are
gathered by PAM, then their frequency is observed. Hence,
every sequence can be represented by a matrix whose length
is the number of poselets and activities. To train the classifier,
the labels of vectors and matrices are manually stamped with
their classes. In this paper, three standard techniques of Support
Vector Machine, K-Nearest Neighbor, and Random Forest are
considered for the classification task. Weka 3.6 [16] which is
a collection of machine learning algorithms for data mining
tasks is used as a tool for performance analysis.

III. EXPERIMENTAL RESULT

A. Dataset

We validate the proposed method on the Florence 3D
Action dataset [14], a well-known dataset widely used for
activity recognition benchmark and our dataset.

(a)

(b)

Fig. 5. Two benchmarked datasets: (a) Florence 3D Action dataset shown
in color images (waving, drinking from a bottle, answering phone, clapping,
tight lacing, sitting down, standing up, reading watch, and bowing), (b) our
dataset (stretching, lying down, sweeping floor, calling phone, reading book,
eating soup, watching TV, and answering phone).

Florence 3D Action dataset: Collected at the University
of Florence in 2012 and recorded by Kinect device, the dataset
has 9 activities: waving, drinking from a bottle, answering
phone, clapping, tight lacing, sitting down, standing up, read-
ing watch, and bowing (see Fig. 5a). During acquisition period,
10 objects were asked to act these activities for 2 to 3 times.
Totally 215 activity samples, one second for each sample, have
been represented in this dataset.

Our dataset: We capture the depth image and skeleton in-
formation of 8 common daily life activities using the Kinect for
Windows v2: stretching, lying down, sweeping floor, calling
phone, reading book, eating soup, watching TV, and answering
phone (see Fig. 5b). From 9 candidates, 72 video sequences
are generated with over 90 minutes in the total length.

B. Experimental Setup

In the our proposed method, we extract 210 couple features
by (5) consisting of distance and angle for each detected body
in the spatio-temporal dimension. For the k-means clustering,
couple features are encoded by using 500 codewords as
the size of codebook. Fundamentally, greater the number of
codewords is, more accuracy the activities are represented by
the codebook. However, if the size of codebook is designed too
large, the codebook construction process will be very time and
memory consuming. In the topic modeling, some parameter
have been set up in advance: the number of activity m = 9
for Florence 3D Action dataset and m = 8 for our dataset,
and the number of poselet n = 100 for both datasets. Using
more poselets in PAM will provide more detail presentation
of relationship of codeword and activity, i.e., the accuracy
might be improved, however, the greater computational cost
will be required for topic modeling. The Dirichlet distribution
over activities and posetlets is produced with parameter 0.01.
The Gibbs sampling process is performed with 1000 burn-in
iterations and then 50 samples are drawn in the following 250
iterations. Feature extraction, codebook construction, and topic
modeling are implemented with Matlab 2013a on the desktop



P (hw, gw|S,H−w, G−w, δ, β) ∝ P (w, hw, gw|S−w, H−w, G−w, δ, β)

=
P (S,H,G| δ, β)
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=
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∑
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η
(s)
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n
∑
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ηuv + βv

ηu +
k
∑
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βv

(11)

computer using CPU Core i5 2.67 GHz and 4 GB RAM. The
activity classification is performed by Weka 3.6 with three
different machine learning techniques. Similar with Florence
3D Action dataset, we validate our dataset on separating each
activity sequence into 1-second samples. All of experiments
are fairly benchmarked with 10-fold validation.

C. Result and Discussion

In the first experiment, we investigate the influence of fea-
ture on the classification accuracy rate by separating two fea-
ture categories: spatial distance-angle and temporal distance-
angle. The classification results are presented by confusion
matrices in Fig. 6. In two benchmarked datasets, the pro-
posed method reports the greater accuracy using the temporal-
based feature instead of the spatial-based feature. Because
skeleton information observed at the current frame might be
misperceived with other activities also represented by a similar
pose, the spatial feature set does not provide the component
translation in two consecutive frames. In the Florence 3D
Action dataset, answering phone has the most confusion with
waving and clapping in classification due to the appearance
of left arm moving poselet in their activity patterns as the key
point. In additions, sitting down and standing are also confused
together because the ending period of sitting is the beginning
stage of standing. In our dataset, calling phone and watching
TV are mostly confused with reading book and answering
phone due to the same poses of sitting and standing.

In the next experiment, we validate the method with
different number of poselet parameter n = {50, 100} in PAM.
Through the results in Fig. 7, the accuracy improvement when
utilizing more poselets in Florence 3D Action dataset is more
evident than our dataset, concretely 8.0% versus 0.4%. In
order to estimate the effect of classifier on the whole method,
we employ three different machine learning techniques. The
average results with various parameter configurations and
different classifiers are summarized in Table II. Due to the use
of Kinect sensor v2, accuracy of joint locating in our dataset is
strongly improved from an updated algorithm from Microsoft
to explain the greater classification rate when compared with
F3D-Action dataset generated by Kinect sensor v1. In this
paper, we further compare the proposed method with existing
methods consisting of Seidenari et al. [14] and Devanne et
al. [17]. Compared with Seidenari’s and Devanne’s method,
the propose scheme outperforms in the average accuracy
rate with SVM and RF classifier (see Table III). Seidenari
proposed an advanced bag-of-poses approach for recognizing
activity from depth camera. Decomposing the body skeleton
into a set of kinematic chains permitted to separably align
body parts. However, the temporal dynamics of the action
information are missed to make the recognition performance
less effective. The activity recognition challenge was addressed
by Devannce [17] as the problem of calculating the similarity

TABLE II. AVERAGE CLASSIFICATION ACCURACY % OF OUR

PROPOSED METHOD ON DIFFERENT PARAMETER CONFIGURATIONS

Feature Category PAM Classifier F3D-Action Our dataset

Spatio Distance-Angle n = 100 K-NN 78.6 94.4
Temporal Distance-Angle n = 100 K-NN 79.3 94.9

Merging Feature n = 050 K-NN 79.0 96.0
Merging Feature n = 100 K-NN 87.0 96.4
Merging Feature n = 100 SVM 89.1 99.2
Merging Feature n = 100 RF 90.2 99.4

TABLE III. COMPARE AVERAGE CLASSIFICATION ACCURACY % OF

OUR PROPOSED METHOD WITH EXISTING APPROACHES

Method F3D-Action Our dataset

Proposed (K-NN) 87.0 96.4
Proposed (SVM) 89.1 99.2
Proposed (RF) 90.2 99.4

Seidenari et al. [14] 82.3 95.1
Devanne et al. [17] 87.0 97.3

between the trajectory shape in a Riemannian manifold. Some
statistical activities, such as lying, sitting, and standing are not
appropriate to extract body-part trajectory shapes for matching.

IV. CONCLUSIONS

In this work, we describe a relationship between body-
pose feature, poselet, and activity using topic modeling tech-
nique for indoor activity recognition. The merged features
extracted from the skeleton are encoded to codewords using
the k-mean clustering technique before they are modelled by
the 4-layer flexible structural model, developed on Pachinko
Allocation Model, to automatically produce the poselet and
activity model. Due to capturing not only the correlations
among features but also the correlations among poselets and
activities, the model is successful to provides more expressive
power to support complicated structures with adopting more
realistic assumptions. We further generate a new dataset in-
cluding eight daily life activities. Compared with the state-of-
art methods in activity recognition area, the proposed method
achieve a greater classification accuracy. The method currently
contributes to the video-based activity recognition component
as one of the most important modules in the Mining Mind
[18]. Combining wearable sensor-based [19] and video-based
activity recognition will bring an impressive solution for
personalized healthcare support. In the future, we will extend
more complex and person-person interactive activities with
a multi-layer codebook construction technique and advanced
PAM.
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Fig. 6. Confusion matrices of K-NN classifiers on spatial distance-angle and temporal distance-angle category using default parameters in PAM on Florence
3D Action dataset (a, b) and our dataset (c, d). A1-A9 corresponding to 9 activities in Fig. 5a, B1-B9 corresponding to 8 activities in Fig. 5b.
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Fig. 7. Confusion matrices of K-NN classifiers on merged feature category using PAM with different numbers of poselet. Results on Florence 3D Action
dataset: (a) n = 50, (b) 1 = 100; and results on our dataset: (c) n = 50, (d) n = 100.
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