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ABSTRACT

This paper improves a remarkable background estima-
tion algorithm, namely Neighbor-based Intensity Correction
(NIC) which is used in the background subtraction technique
for foreground detection. The algorithm has an efficient in-
tensity correction scheme to update the current background
based on calculating the standard deviation of two windows
captured from the background and the input frame in which
the windows are constructed by a squared-structure binary
mask. Although the NIC algorithm achieved the compara-
tive results with existing approaches on the foreground de-
tection accuracy and processing speed, its performance in
the multi-modal background including high-speed motion
and camera jitter should be improved. In the original algo-
rithm, we recognize that the shape of a binary mask further
affects the updating performance besides the window size
which was already analyzed. Various shapes are therefore
recommended for the multi-modal background adaptation.
Moreover, an adaptive threshold identified by referring sev-
eral previous Otsu thresholds to cope with the high-speed
motion challenge is proposed. Experimental results on some
standard datasets such CAVIAR 2004, AVSS2007, PETS
2009, and CDNET 2014, demonstrate that the foreground
detection accuracy is significantly boosted with 2.6-6.7% of
the F-measure metric.

CCS Concepts

•Computing methodologies→Computer vision prob-
lems; Motion capture; Scene anomaly detection; Image ma-
nipulation; Image processing;
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Despite the wide utilization of foreground detection in vi-
sual surveillance systems [7] for both indoor and outdoor
scenarios, the authors aim to discuss some major issues con-
sisted of the accuracy of foreground detection for multi-
modal backgrounds. Compared with difference frame and
optical flow approaches, background subtraction based tech-
niques have some advantages for real-time implementation,
however, detection accuracy mostly depends on the scene
background that has to be estimated by a background mod-
eling algorithm. Fundamentally, background is defined as
the part of a scene that stays behind a main figure or object
in a painting, photograph, etc., but in most researches, it is
recognized as a reference image without human or objects.
Some existing estimation models are capable of improving
the terms of accuracy and computational cost with more
frames in use, nevertheless, they are failed in harsh condi-
tions such as dynamic background and camera jitter scenar-
ios. A background updating scheme is commonly considered
as an advanced solution for above challenges.

In spite of being recognized as one of the most simple
schemes, statistical approaches cannot satisfy the real-time
response due to the statistic accumulation process and as
well as failure in involving objects as foreground in the in-
termittent object motion cases [13], [16], [10]. The most
widely used background estimation algorithm is Gaussian
Mixture Model (GMM) [18], in which the background is con-
secutively updated by an online approximation. The natural
drawback of GMM is algorithm assumptions: (i) the back-
ground region is larger and more frequently observable than
the foreground region and (ii) its variance is small enough.
Several GMM based improvements have been recommended
with an adaptive model component-parameter calculation.
Some optimization techniques including online expectation-
maximization [12] and particle swarm optimization algo-
rithm [3], were further applied for learning model. Nev-
ertheless, the fact that the parameter estimation in GMM
based approaches is still a challenging task when applying
them to practical systems.

Some researches have studied non-parameter background
models to eliminate the parameter tuning task. In the code-
book techniques, the background pixels were quantized as
codewords to illustrate a compressed background model dur-
ing several input frames [11]. Enhanced codebook based ap-
proaches [9], [14] improved the foreground detection accu-
racy in some special conditions such as dynamic background
and camera jitter. A multilayer codebook model [6] was de-
veloped for non-stationary background removal and process-
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Figure 1: The workflow of the NIC-based fore-
ground detection.

ing cost reduction. Requirements of a long duration and a
high amount of memory for the background estimation step
are the shortcomings of codebook based techniques. Kernel
Density Estimation (KDE) [5], another non-parameter tech-
nique, estimates the probability density function on both
global and local histograms to redefine the current pixel in-
tensity. KDE was further developed for identifying whether
a pixel belongs to the background or foreground site. A hy-
brid model [15], assembled by KDE and GMM, was success-
ful to construct a probability density function for the back-
ground and motion model. Recently, Visual Background
Extraction (ViBE) approach [2] determined whether a pixel
belongs to the background based on the comparison between
its intensity and random neighbouring values. Compared
with other pixel based methods, ViBE reported an impres-
sive performance of foreground detection accuracy and com-
putational speed with a downscale version for the hardware
embedment. However, ViBE is quite sensitive with rough
scene models, e.g., camera jitter and highly dynamic back-
ground. A recursive algorithm, developed from the sigma-
delta filter method, was a novel attempt to optimize the pro-
cessing speed and memory utilization. An enhanced story
of the sigma-delta algorithm was recommended by Toral et
al. [19] to cope with dynamic speed motions. Recently,
Neighbor-based Intensity Correction (NIC) [8] was intro-
duced to use the neighbouring information to update the es-
timated background consecutively. NIC algorithm achieved
a comparative performance with existing background mod-
eling approaches, however, its accuracy was limited in multi-
modal backgrounds.

In this paper, we improve the NIC algorithm [8] to effi-
ciently detect the foreground in terms of multi-modal back-
grounds. In the original algorithm, the current background
is updated in general by comparing the standard deviation
calculated from neighbouring pixels which are formed by a
fixed-size square mask for all background challenges. Besides
the mask size which was already investigated [8], the shape
of mask further disturbs the estimation accuracy. Hence,
the improvement on the use of different shapes such as rect-
angle, diagonal, and circle for the multi-modal background
adaption of baseline, dynamic background, directional mo-
tion, and camera jitter is the main contribution of this pa-
per. Moreover, an Otsu-based adaptive threshold is recom-
mended to handle the high speed motion challenge in which
the objects appear and disappear suddenly in a couple of
frames. Compared to the original algorithm and the state-
of-the-art approaches, our proposed improvements advance
foreground detection accuracy on several standard datasets.
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Figure 2: An illustration of capturing windows from
the input frame and the current background.

2. THE METHODOLOGY
Foreground extraction is one of the most important stages

in several video-based applications such as the object track-
ing and activity recognition which are usually perceived in
real-time systems, such as Closed-Circuit Television (CCTV).
However, the detection accuracy and processing speed are
still challenges, especially in poorly visual conditions. In
the research, we improve the NIC algorithm [8] for the back-
ground estimation and present an Otsu-based adaptive thresh-
old for background subtraction. The workflow of the NIC
based foreground detection approach is presented in Fig. 1
in which the improvements are performed in Intensity cor-
rection and Otsu-based thresholding.

2.1 The NIC algorithm
This section briefly reviews the NIC algorithm [8]. For

the ith frame (∀i ≥ 2), the difference frame, denoted Di,
between the estimated backgroundBi−1 and the input frame
Fi, is computed by the following equation:

Di (x, y) = |Fi (x, y)−Bi−1 (x, y)| (1)

where (x, y) is pixel coordinates with x ≤ P and y ≤ Q,
P × Q is the image resolution. In practice, D may contain
the information of object motion and noise, therefore, it
should be separated into motion and non-motion areas by
the constant threshold τ :

D
∗

i (x, y) =

{

1 ;Di (x, y) ≥ τ

0 ;Di (x, y) < τ
(2)

The output D∗

i is a binary image with 0-bit pixels repre-
senting the non-motion region and 1-bit pixels representing
the motion region. In the next step, to eliminate outliers
and minimize computational cost, the pixel intensity stable-
ness is studied in the whole of the image. A basic idea is
that the stableness of a pixel will be downgraded if its inten-
sity is consecutively changed frame by frame and vice versa.
Concretely, the stableness is calculated as follows:

Si (x, y) =

{

Si−1 (x, y)− 1 ;∀D∗

i (x, y) = 1
Si−1 (x, y) + 1 ;∀D∗

i (x, y) = 0
(3)

where S is the stableness matrix which is initially a null/zero
matrix, i.e., S1 = 0. By crossing two conditions of motion
region and negative stableness, the motion pixels which need
to be corrected are identified and grouped into the set Pi.
The pixel selection in Fig 1 is processed by the following
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Figure 3: Multiplication operation results using two
different structure elements.

expression:

Pi = {(x, y) | [D∗

i (x, y) = 1] ∩ [Si (x, y) < 0]} (4)

The NIC algorithm is fully executed for the pixels in the
set Pi. For each pixel in Pi as the central point, two windows
containing neighbouring pixels of the background, denoted
WB , and the input frame, denoted WF , are captured as the
illustration in Fig 2. The neighbouring pixels are captured
by a binary mask which is shaped in square. These pixels are
mathematically determined by the multiplication operation:

W
∗ = W ⊙M (5)

where M is the binary mask, W is the window covering
neighbouring pixels. This step is obviously described in Fig
3. In the original paper, W ∗ = W as the illustration in Fig
3 with the square structure element as in Fig 3. The NIC’s
authors evaluated the algorithm with different sizes of the
square mask, e.g., from (3× 3) to (11× 11). Based on the
experimental results [8], it is recognized that the size im-
pact certainly make the influences on foreground detection
accuracy and processing speed.

As the next step of NIC algorithm, the standard deviation
is calculated for all pixels belonging to W ∗ by the following
equation:

σ =

√

√

√

√

1

N

N
∑

n=1

(

W ∗ (n)− 1

N

N
∑

n=1

W ∗ (n)

)2

(6)

where N is the number of available pixels. For each pixel in
set P , σB

(x,y) and σF
(x,y) of W ∗

B and W ∗

F are calculated. The
intensity correction rule is executed based on comparing the
standard deviations:

Bi (x, y) =

{

Bi−1 (x, y) ;∀ (x, y) ∈ Pi

∣

∣σF
(x,y) ≥ σB

(x,y)

Fi (x, y) ;∀ (x, y) ∈ Pi

∣

∣σF
(x,y) < σB

(x,y)

(7)
By this way, the background is successively updated at each
input frame and then provided to the background subtrac-
tion stage.

2.2 Improvement with multi-shape for multi-
modal backgrounds

In the NIC algorithm, pixel identification for the standard
deviation calculation evidently alters the background updat-
ing performance. Besides the mask size that was evaluated
in the original research [8], the shape also has a certain in-
fluence that should be put to the test. Five typical masks
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Figure 4: An illustration of using two different struc-
ture elements: (a) six structure elements (from left
to right: square, vertical, horizontal, circle, and di-
agonal) and (b)

with different shapes, called structure elements (se), shown
in Fig 4(a) are recommended to use in the NIC algorithm for
multi-modal background challenge. Another example shown
in Fig. 4(b) is particularly analysed in which the number
and position of identified pixels for calculating the standard
deviation are different. Simplifying an input frame only con-
taining two groups, non-motion pixels with intensity g0 and
motion pixels with intensity g1, the standard deviation is
calculated as follows (described in NIC’s paper [8]):

σ =

√

1

n0 + n1

[

n0(g0 − µ)2 + n1(g1 − µ)2
]

=

√
n0n1

n0 + n1
|g0 − g1|

(8)

where n0 and n1 are the numbers of non-motion and motion
pixels. While the terms |g0 − g1| and (no + n1) are constant,
the standard deviation depends on

√
n0n1. As the illustra-

tion in Fig. 4(b), the output of intensity updating is false if
the square structure element is utilized instead of the vertical
structure element. In case of square structure element, the
window captured from the background contains three non-
motion pixels n0 = 3 and six motion pixels n0 = 6 while the
window captured from the input frame has six non-motion



pixels n0 = 6 and six motion pixels n0 = 3. Following (8)
that σB

p2
= σF

p2
leads to Bi (p2) = Bi−1 (p2), i.e., the in-

tensity of p2 is preserved as g1 instead of adjusting to g0.
However, by using the vertical structure element, pixel p2 is
correctly updated from g1 to g0 because of σF

p2
< σB

p2
.

2.3 Otsu-based thresholding
The difference mask is calculated between the updated

background and the current frame by re-using (1). An Otsu-
based adaptive threshold is proposed for the foreground de-
tection instead of the constant threshold τ . Fundamentally,
Otsu method is formulated for image segmentation appli-
cations by the clustering-based thresholding. It calculates
the optimal threshold to separate an image into the back-
ground area and the foreground area on the intra-class vari-
ance minimization, thus the classification error is thoroughly
minimized. The Otsu threshold δ is defined as:

δi = argmin
g

(

σ
2
ω (g)

)

(9)

where σ2
ω is the sum of weighted variances of two pixel classes

at the intensity g. In the states of sudden arrival and depar-
ture of moving objects, the threshold might be inaccurately
determined due to the existence of non-object motions as
noise. This fact leads to wrongly identify moving objects in
the scene. By referring m earlier values with the normalized
weights w, we smooth the current threshold:

δi =
[

δi δi−1 · · · δi−m+1

]

×wT (10)

where w is the weight vector:

w =

[

m2 (m− 1)2 · · · 1
]

m
∑

k=1

k2

(11)

The thresholding process is implemented by replacing τ by
δ in (2). As the post-processing steps, some morphological
operations, consisted of erosion and dilation, are usefully
utilized to remove salt - pepper noise and small holes, to
fuse narrow breaks and long thin gulfs, as well as fill gaps in
the contour.

3. EXPERIMENTAL RESULTS AND CON-

CLUSION
We evaluate the NIC based improvement algorithm on

six videos which are Walk3 from CAVIAR [4], PV Medium
from AVSS 2007 [1], View 006 from PETS 2009 [17], and
highway, canoe, badminton from CDNET 2014 [20]. The ex-
periments are simulated by MATLAB R2013a on a desktop
PC operating Windows 7 with a 2.67 GHz Intel Core i5 CPU
and 4GB RAM. The quality of estimated backgrounds in the
statistical background scenes is evaluated by the Peak Signal
to Noise Ratio (PSNR) and Structure Similarity (SSIM). As
the principal experiment, the foreground detection accuracy
is validated and further compared with some state-of-the-
art approaches on quantitative performance metrics: True
Positive Rate (TPR), False Positive Rate (FPR), Precision
(PRE), and F-measure (F1). The authors set τ = 25 and
m = 5 as the default setting parameters. Three experiments
are explained as follows:

• In the first experiment, the background estimation qual-
ity is measured for the statistical background challenge
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Figure 5: Background estimation results for highway

sequence.

on the highway sequence using the circle structure el-
ement se4.

• Secondly, the foreground detection accuracy is bench-
marked for all sequences representing challenges of the
high-speed motion, shadow, camera jitter, and dynamic
background.

• In the last one, the improved version is compared with
original algorithm and some existing highlight approaches.

In the first experiment, the algorithm is benchmarked
for the highway sequence representing the statistical back-
ground because obtaining the pure background in other se-
quences reflecting the dynamic background and camera jit-
ter is almost impossible. As the PSNR and SSIM results
are graphically shown in Fig. 5, the background quality is
improved following the increment of the number of frames,
however, the sudden appearance-disappearance of the ob-
jects in the high-speed motion scenario affects to estimation
results at some frames. The Otsu-based adaptive threshold-
ing cannot completely solve this critical problem.

In the next experiment, the foreground detection evalu-
ation is performed for all video sequences using different
structure elements. The visualization results of some sam-
ples are presented in the Fig. 6 and the quantitative re-
sults are graphically reported in Table 1. Compared with
other structure elements, se4 (the circle shape) is most effi-
cient for the camera jitter and the dynamic background chal-
lenge as well as with F1 measurement, e.g., 0.8264, 0.9440,
and 0.9246 respectively corresponding to PV Medium, bad-
minton, and canoe sequence. The shadow problem and high-
speed motion in PV Medium and highway videos are ade-
quately solved by either se5 or se6 with average F1 of 0.9484
and 0.8244, respectively. However, it should be noted that
the remarkable result in the high-speed motion challenge
also comes from the Otsu-based adaptive threshold. With
the normal condition represented by the View 006, the dif-
ferences in the accuracy of foreground detection from struc-
ture elements are insignificant. According to obtained re-
sults, the non-direction shaping mask se4 is strongly recom-
mended for the multi-modal background challenge.
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Figure 6: Visual foreground detection results of testing sequences with true positive pixel in white, true
negative in black, false positive in red, and false negative in green.

The last experiment compares the NIC-based improve-
ment algorithm with the original and other approaches in-
cluding the improved adaptive GMM (I-GMM) [21], the
original ViBE [2], and the spherical K-means Expectation-
Maximization (spkmeansEM) [12]. All of the benchmarked
algorithms are implemented by ourselves. The extracted
foregrounds from all evaluated approaches are shown in Fig.
6 and the quantitative results are plotted in Table 2. It
is important to note that se4 is used for this experiment.
Compared to the original algorithm, the detection accu-
racy of the NIC improvement is mostly boosted thanks to
the new efficient mask and the adaptive threshold. TPRs
are strongly enhanced for the canoe, Walk3, View 006, and
PV Medium, although the FPRs sometimes increases unfor-
tunately in some of the videos. For all datasets, we reach
the average F1 of 0.9108 which is higher than some testing
approaches 2.99-6.70%. Compared with others, I-GMM fre-
quently produces the poorest accuracy due to the natural
limitation in parameter selection for each particular back-
ground challenge. Based on the results on the highway and
View 006 sample, ViBE is really effective for the high-speed
motion and the normal background scenarios, however, its
weakness is exposed in the tasks of camera jitter and dy-
namic background. By combining the spherical K-means
clustering and the expectation-maximization algorithm, sp-
kmeansEM produces comparative accuracy for all testing
sequences.

4. CONCLUSIONS
We improved the NIC algorithm for multi-modal back-

grounds by exploiting different structure elements for mask-
ing a window of pixels. In the background subtraction, an
Otsu-based adaptive threshold is recommended against the
high-speed motion challenge. The improvement is evalu-
ated on six sequences representing some critical background
challenges and then compared with existing highlight ap-
proaches in term of foreground detection accuracy. Based
on the obtained results, the improvement with the circle
mask, a non-directional shaping mask, mostly outperforms
the original algorithm using the square element and other
existing approaches 2.6-6.7% of higher accuracy, especially
for the camera jitter and dynamic background. In the fu-
ture, an automatically selective scheme for an appropriate
structure element and the complexity evaluation need to be
studied as well.
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Table 1: TPR, FPR, PRE, And F1 Results Of Foreground Detection With Different Structure Elements.

HIGHWAY CANOE

TPR FPR PRE F1 TPR FPR PRE F1

se1 0.902 0.006 0.980 0.940 se1 0.871 0.014 0.967 0.917

se2 0.910 0.009 0.970 0.939 se2 0.860 0.012 0.972 0.912

se3 0.906 0.008 0.974 0.939 se3 0.854 0.015 0.963 0.905

se4 0.896 0.005 0.985 0.938 se4 0.885 0.014 0.969 0.925

se5 0.922 0.007 0.977 0.949 se5 0.870 0.017 0.960 0.913

se6 0.916 0.005 0.983 0.949 se6 0.874 0.010 0.976 0.922

WALK3 VIEW006

TPR FPR PRE F1 TPR FPR PRE F1

se1 0.917 0.054 0.876 0.896 se1 0.873 0.021 0.948 0.909
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