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Abstract

This paper presents a novel background subtraction

method that is flexible for various background scenar-

ios. The method includes automated-directional masking

(ADM) algorithm for adaptive background modeling and

historical intensity pattern reference (HIPaR) algorithm for

foreground segmentation. By selecting an appropriate mask

in a set based on directional feature, ADM updates back-

ground smoothly and precisely following a boundary-based

strategy with an intensity correction rule. In order to seg-

ment foreground, HIPaR refers intensity patterns of pre-

vious backgrounds and input frames and then compares

their mean difference with a checking threshold to make

foreground decision. Experimental results prove that our

proposed ADM-HIPaR outperforms other state-of-the-art

methods in terms of foreground detection accuracy.

1. Introduction

Foreground detection is the prior stage for numerous

multimedia applications of video surveillance such as traffic

monitoring and human-computer interaction. Many back-

ground subtraction based approaches have been studied to

reach performance in terms of accuracy and real-time pro-

cessing, however, some of which are usually fragile un-

der hash conditions of artifacts, shadow, dynamic back-

ground, camera jitter, etc due to poorly estimated back-

ground [2, 3, 18]. Background estimation is therefore re-

alized as an important component that directly affects to the

accuracy of foreground detection at first and overall system

so far.

As basic models, luminance- and histogram-statistical

approaches have been presented to determine whether a

pixel belongs to foreground or background. Some advanced

techniques such as Gaussian Mixture Model (GMM) [19,

21], Kernel Density Estimation (KDE) [5], and Principle

Component Analysis (PCA) [16] have been proposed to

accurately detect foreground for multi-modal background.

However, GMM takes a drawback in estimating model pa-

rameters and KDE cannot handle concurrently moving ob-

jects at various velocities. A hybrid model [13] combining

GMM and KDE is developed to control the above prob-

lem. To eliminate the parameter tuning task, some non-

parametric background models have been studied. Code-

book technique [11] allows to quantize background pixels

to codewords for building a compressed background model

in a number of frames. Requirements of high memory con-

suming and expensive frame resource are major shortcom-

ings of codebook-based approaches [10, 12].

Artificial intelligence including fuzzy-based and neural-

network techniques such as Fuzzy Mixture of Gaussian [4]

and Self-Organizing Neural Network [14, 6] have been

studied as well for background modeling. They build a

flexible probabilistic background model by an unsupervised

learning to detect moving objects using block-similarity

matching. Recently, pixel-wise advanced background esti-

mation algorithms classify pixels by comparing its intensity

with randomly neighbouring pixels in Visual Background

Extraction (ViBE) [1] and shaped neighbouring pixels in

Neighbor-Intensity Correction (NIC) [9]. Using a fixed-

squared mask for shaping neighbouring pixels is not robust

and thus suppresses the multi-modal background estimation

performance.

This work presents a novel background subtraction

method, namely ADM-HIPaR, which is a combination

of two proposed algorithms, one is automated-directional

masking and another is historical intensity pattern refer-

ence. Based on directional feature calculated for each edge

pixel belonging to motion boundary, a particular mask in a

predefined set is selected to capture neighbouring-intensity

patterns of two adjacent frames. According to intensity pat-

tern comparison, background update operation is done by

an efficient correction rule which is improved from NIC

[9]. As a result, the background is estimated more ac-

curate if compared to existing works. In the background

subtraction stage, we retrieve the squared intensity patterns
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Figure 1. The workflow of our proposed method with Automated -Directional Masking (ADM) for background estimation and Historical

Intensity Pattern Reference (HIPaR) for foreground detection.
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Figure 2. The illustrations of: (a) directional feature calculation

for edge pixels denoted by blue color, (b) boundary-based strategy

processing from blue to yellow and green.

which are extracted from backgrounds and input frames in

the spatio-temporal dimension, to execute foreground deci-

sion by comparing the pattern difference with a checking

threshold. Experimental results demonstrate the superior-

ity of our proposed ADM-HIPaR over recent background

subtraction approaches on the CDnet dataset.

2. Methodology

This section describes our contribution of two proposed

algorithms that are automated-directional masking for adap-

tive background estimation and historical intensity pattern

reference for accurate foreground detection as presented in

Figure 1.

2.1. Automated­Directional Masking For Back­
ground Estimation

Following NIC algorithm for background estimation, an

initial background is updated by analyzing neighbouring-

intensity patterns surrounding each motion pixel. Two pat-

terns, independently captured from a background and an

input frame using a binary mask, are compared through

standard deviations to perform an intensity correction rule.

Since using a fixed-squared mask for various background

models is analyzed as the major limitation of [9] , the main

idea of this work is to automatically select an appropri-

ate binary mask based on directional feature of boundary

edge. This leads to significant accuracy enhancement for

foreground detection.

Given a set of motion-differencing pixels M, extracted

from a difference imageD (t) = |F (t)− F (t− 1)|, which

needs to be modified to retrieve truth background intensity,

we at first trace boundaries as illustrated in Figure 2(a).

Compared to [9] where intensity adjustment is done for

pixels in coordinate ordering, the proposed boundary-based

strategy as shown in Figure 2(b) smoothly produces a high-

quality background. For each boundaryB, we calculate di-

rectional feature as an angle between each edge pixel p ∈ B

and a central point c as

θ(p, c) = tan−1

(

yp − yc

xp − xc

)

(1)

where (xp, yp) and (xc, yc) are locations of p and c respec-

tively. We quantize θ (p, c) to four classes constructed by

eight directional sectors, denoted S1→8. Sector definition is

graphically illustrated in Figure 3(a) and expressed as

S1 : θ (p, c) < 22.50
∣

∣337.50 ≤ θ (p, c) < 3600

S2 : 22.50 ≤ θ (p, c) < 67.50

S3 : 67.50 ≤ θ (p, c) < 112.50

S4 : 112.50 ≤ θ (p, c) < 157.50

S5 : 157.50 ≤ θ (p, c) < 202.50

S6 : 202.50 ≤ θ (p, c) < 247.50

S7 : 247.50 ≤ θ (p, c) < 292.50

S8 : 292.50 ≤ θ (p, c) < 337.50

(2)

Based on a sector which θ (p, c) should belong to, a corre-

sponding maskH (p) is particularly identified for each edge

pixel p:

H (p) =















H15 if θ (p, c) ∈ {S1, S5}
H26 if θ (p, c) ∈ {S2, S6}
H37 if θ (p, c) ∈ {S3, S7}
H48 if θ (p, c) ∈ {S4, S8}

(3)

There are totally five masks which are horizontal H15, ver-

tical H37, bottom-left to top-right diagonal H48, top-left to

bottom-right diagonal H26, and circle Hc as shown in Fig-

ure 3. It is noted that the circle one in Figure 3(a), is used

for the special case of single-pixel boundaries in Figure 2.

Our proposed ADM algorithm plays the most important

role in the background estimation workflow. We assume
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Figure 3. The illustrations of: (a) sector partition (top) and circle

mask Hc (bottom) for single-pixel boundaries, (b)-(e) four binary

masks corresponding to eight directional sectors including H15 for

θ ∈ {S1, S5}, H26 for θ ∈ {S2, S6}, H37 for θ ∈ {S3, S7}, and

H48 for θ ∈ {S4, S8}, respectively.

the first frame in a video sequence is the initial background

J (1) = F (t = 1). Since background motion and mov-

ing objects may be available in background J beforehand,

they need to be discarded to obtain a background which

is as pure possible. A difference image D (t) is extracted

at tth frame (∀t ≥ 2). By global thresholding, a motion-

differencing set M is defined as

M (t) = {(x, y) |D (t) ≥ τ } (4)

where τ is the constant threshold to identify the difference

between two adjacent frames. To exclude outliers, pixel sta-

bleness is measured for all of pixels by monitoring intensity

changes between two frames as

ψ (t) =

{

ψ (t− 1) + 1 ∀ (x, y) |D (t) < τ

ψ (t− 1)− 1 ∀ (x, y) |D (t) ≥ τ
(5)

where ψ (1) = 0 for initialization. This coefficient of a

pixel will be small if its intensity is successively changed

and vice versa. To filter pixels for applying intensity cor-

rection, we intersect two condition as follows

(x, y) |M (t) ∩ (ψ (t) < 0) (6)

Eq. (6) refers that only pixels in M (t) with negative stable-

ness are requested to update intensity following boundary-

based strategy. Our proposed ADM, consisted of directional

feature calculation by Eq. (1), sector mapping by Eq. (2),

and mask selection by Eq. (3), is then applied to each edge

pixel to choose an appropriate mask. By doing multiplica-

tion operation betweenH and neighbouring pixels, two pat-

terns, denoted F (t) and F (t− 1), are extracted from F (t)
and F (t− 1) respectively. Due to the difference between

two intensity patterns, particularly the ratio between a num-

ber of motion and non-motion pixels, we compare standard

deviation which is calculated as

σ =

√

√

√

√

1

n− 1

n
∑

i=1

|g (i)− µ|2 (7)

µ =
1

n

n
∑

i=1

g (i) (8)

where g is pixel intensity and n is the number of pixels in

mask. Value of a motion-differencing pixel is updated in J

to a new intensity of corresponding location in either F (t)
or F (t− 1) by a correction rule

J (t) =

{

F (t) if σF(t−1) ≥ σF(t)

F (t− 1) if σF(t−1) < σF(t)
(9)

where σF(t−1) and σF(t) are the standard deviations cal-

culated from F (t− 1) and F (t) respectively. Compared

to [9] where a pixel is updated from background intensity

to current frame intensity only if σJ (t−1) < σF(t), where

σJ (t−1) is the standard deviation of background pattern

J (t− 1), the event of object motionlessness for a while

is able to handle with the new rule.

2.2. Historical Intensity Pattern Reference For
Foreground Detection

By subtraction operation, we extract frame differenc-

ing between the current frame F (t) and the updated back-

ground J (t) by D (t) = |F (t)− J (t)|. Let N be a set of

candidate pixels for foreground classification

N (t) = {(x, y) |D (t) ≥ δ } (10)

where δ is the intensity threshold to filter foreground pix-

els. To verify whether a pixel belongs to foreground,

we propose historical intensity pattern reference algorithm

(HIPaR) that allows to segment foreground more accu-

rately. We retrieve squared intensity patterns of the esti-

mated backgrounds {J (t− 1) , J (t)} and the input frames

{F (t− 1) , F (t)}, denoted J (t− 1, t) and F (t− 1, t)
respectively, surrounding a pixel (x, y) ∈ N (t). Referring

intensity of neighbouring pixels aims to handle frequent

background motions as well. By an comparison operator,

foreground decision for each pixel is adopted as follows

(x, y) =

{

1 if ∆µ ≥ γ

0 otherwise
(11)

where γ is the threshold that aims to check the pattern dif-

ference. ∆µ =
∣

∣µJ (t−1,t) − µF(t−1,t)

∣

∣ is the mean differ-

ence in which µJ and µF can be calculated using Eq. (8).

As a post-processing step, opening and closing morpholog-

ical operations are utilized to remove noise and fill holes.

3. Experimental results

In this section, we evaluate and analyze foreground de-

tection performance of the proposed method with vari-

ous parameter configurations on several testing video se-

quences. A method comparison in terms of accuracy is

further presented to prove the efficiency of ADM-HIPaR

against to other state-of-the-art methods.



Figure 4. Visual results of foreground detection with true positive (TP) pixels in white, true negative (TN) pixels in black, false positive (FP)

pixels in red, and false negative (FN) pixels in green on testing videos (Top to bottom: input frame, ground truth, and detected foreground.

Left to right: pedestrians, PETS2006, highway, office, canoe, traffic, parking, and bungalows).

3.1. Dataset

We evaluate our proposed ADM-HIPaR model on sev-

eral video sequences in the ChangeDetection dataset [20].

Totally eight videos are chosen from five categories: high-

way, office, pedestrians, and PETS2006 from Baseline, ca-

noe from Dynamic Background, traffic from Camera Jitter,

parking from Intermittent Object Motion, and bungalows

from Shadow. Some samples in Baseline contain subtle

background motion, isolated shadows, abandoned objects,

and pedestrians (stop for a short while and then go away).

Canoe presents a scene with dynamic background motion,

e.g., leaf and water motion. Traffic is captured in outdoor

by a strongly vibrating camera. For much more challeng-

ing, parking and bungalows samples contain background

objects moving away and hard shadow objects with inter-

mittent shades.

3.2. Metric

Foreground detection performance is quantitatively

benchmarked using Recall (Re), Specificity (Sp), False Pos-

itive Rate (FPR), False Negative Rate (FNR), Percentage of

Wrong Classifications (PWC), F-Measure (F1), and Preci-

sion (Pre) [7]. Larger Re, Sp, F1, and Pre indicate supe-

rior detection performance while remains should converge

to zero of wrong classification.

3.3. Evaluation

The default parameters for all testing videos is config-

ured as follows: τ = 15, δ = 30, and γ = 25. Based

on the quantitative results reported in Table 1, we reach the

high foreground detection accuracy for the most of video

sequences, except traffic and parking. Concerning the base-

line category, the average F-measure is observed at 0.9191.

Because of the strong vibration in traffic, estimated back-

grounds are unstable leading to poor quality of segmented

foreground. Containing more background objects causes
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Figure 5. Average F-measures of ADM-HIPaR for all testing

videos when varying parameters (a) the difference threshold τ in

Eq. (4), (b) the intensity threshold δ in Eq. (10), and (c) the pattern

checking threshold γ in Eq. (11).
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Figure 6. Average processing speeds of all video sequences ex-

pressed in FPS (Frames Per Second).

foreground misunderstanding in parking. The visual results

of foreground detection are presented in Fig. 4 where binary

classification results are highlighted in different colors. We

also evaluate the proposed method under various parameter

configurations. According to the average F-measure scores

plotted in Fig. 5, we recommend to use 15 ≤ τ ≤ 20,

30 ≤ δ ≤ 40, and 20 ≤ γ ≤ 25 to obtain high accuracy in

background estimation as well as foreground detection.

In the next experiment, we compare our proposed ap-

proach with two baseline algorithms as Kernel Density Es-

timation (KDE) [5], Gaussian Mixture Model (GMM) [21]

and several state-of-the-art approaches such as Spatial

Coherent Self-Organizing Background Subtraction (SC-

SOBS) [14], Pixel-Based Adaptive Segmenter (PBAS) [8],

Spectral-360 [17], Graph Cut algorithm (GraphCutD-

iff) [15], Neighbor-based Intensity Correction (NIC) [9] on

eight video samples. Based on the quantitative results re-

ported in Table 2, it can be seen that our ADM-HIPaR

mostly outperforms other methods, especially with Recall,

False Negative Rate, and F-measure metrics. For the re-

maining metrics, our results have insignificant deviation of

performance with those of the best score methods. Com-

pared to NIC using a fixed-squared mask, ADM-HIPaR im-

pressively improves 5.43%, 8.76%, and 7.88% of Recall,

Precision, and F-measure respectively.

In order to analyze the computational cost of the pro-

posed method, we use a profiling tool in Matlab 2014b

to measure the time required for background estimation

and foreground detection. The experiment is performed

on a notebook operating Windows 10 with a 2.70 GHz i7-

5700HQ processor and 16-GB RAM. According to the re-

sults shown in Fig. 6, traffic and canoe samples require

more time for background estimation because of vibration

and dynamic background motion.

4. Conclusions

In this paper, we propose an efficient background sub-

traction method, namely ADM-HIPaR, that greatly im-

proves foreground detection accuracy on several challeng-

ing video sequences. A background is flexibly estimated

by our proposed automated-directional masking algorithm

and an improved correction rule. To segment foreground,

we introduce historical intensity pattern reference algorithm

where the foreground decision is adopted by comparing the

pattern difference of background and input frame with a

checking threshold. We benchmark our proposed ADM-

HIPaR method on various parameter configurations in terms

of background detection accuracy and processing speed.

Experimental results demonstrate that the proposed method

is more powerful than recent state-of-the-art approaches.

Future work will concentrate on handling hard shadow

problem, as well as automatically selecting best-score pa-

rameters for particular background scenarios.
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[3] T. Bouwmans, J. Gonzàlez, C. Shan, M. Piccardi, and

L. Davis. Special issue on background modeling for fore-

ground detection in real-world dynamic scenes. Machine Vi-

sion and Applications, 25(5):1101–1103, 2014.

[4] F. El Baf, T. Bouwmans, and B. Vachon. Type-2 Fuzzy Mix-

ture of Gaussians Model: Application to Background Mod-

eling, pages 772–781. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2008.

[5] A. Elgammal, D. Harwood, and L. Davis. Non-parametric

Model for Background Subtraction, pages 751–767. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2000.

[6] G. Gemignani and A. Rozza. A robust approach for

the background subtraction based on multi-layered self-

organizing maps. IEEE Transactions on Image Processing,

25(11):5239–5251, Nov 2016.

[7] N. Goyette, P. M. Jodoin, F. Porikli, J. Konrad, and P. Ish-

war. Changedetection.net: A new change detection bench-

mark dataset. In 2012 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition Workshops, pages

1–8, June 2012.

[8] M. Hofmann, P. Tiefenbacher, and G. Rigoll. Background

segmentation with feedback: The pixel-based adaptive seg-

menter. In 2012 IEEE Computer Society Conference on



Sample Re Sp FPR FNR PWC Pre F1

pedestrians 0.9283 0.9995 0.0005 0.0717 0.1194 0.9491 0.9386

PETS2006 0.9383 0.9967 0.0033 0.0617 0.4180 0.8049 0.8665

highway 0.9341 0.9924 0.0076 0.0659 1.1077 0.8853 0.9090

office 0.9848 0.9954 0.0046 0.0152 0.5321 0.9409 0.9623

canoe 0.8861 0.9991 0.0009 0.1139 0.4890 0.9734 0.9277

traffic 0.7853 0.9724 0.0276 0.2147 3.9294 0.6534 0.7133

parking 0.7020 0.9488 0.0512 0.2980 7.0278 0.5347 0.6071

bungalows 0.9356 0.9773 0.0227 0.0644 2.5203 0.7244 0.8166

Average 0.8868 0.9852 0.0148 0.1132 2.0180 0.8083 0.8426

Table 1. Foreground detection performance of the proposed ADM-HIPaR.

Method Re Sp FPR FNR PWC Pre F1

DKE [5] 0.7974 0.9852 0.0148 0.2026 2.5760 0.7993 0.7803

I-GMM [21] 0.7996 0.9874 0.0126 0.2004 2.3700 0.8121 0.7945

SC-SOBS [14] 0.8585 0.9851 0.0149 0.1415 2.2609 0.8000 0.8230

GraphCutDiff [15] 0.6762 0.8945 0.1055 0.3238 12.1194 0.6401 0.5180

PBAS [8] 0.7866 0.9924 0.0076 0.2134 2.0436 0.8640 0.7717

Spectral [17] 0.8108 0.9911 0.0089 0.1892 2.0033 0.8529 0.8091

NIC [9] 0.8411 0.9827 0.0173 0.1589 2.5593 0.7432 0.7810

Our ADM-HIPaR 0.8868 0.9852 0.0148 0.1132 2.0180 0.8083 0.8426

Table 2. Comparison of the proposed ADM-HIPaR to several state-of-the-art methods using seven performance metrics.

Computer Vision and Pattern Recognition Workshops, pages

38–43, June 2012.

[9] T. Huynh-The, O. Banos, S. Lee, B. H. Kang, E. S. Kim,

and T. Le-Tien. Nic: A robust background extraction al-

gorithm for foreground detection in dynamic scenes. IEEE

Transactions on Circuits and Systems for Video Technology,

PP(99):1–1, 2016.

[10] A. Ilyas, M. Scuturici, and S. Miguet. Real time foreground-

background segmentation using a modified codebook model.

In 2009 Sixth IEEE International Conference on Advanced

Video and Signal Based Surveillance, pages 454–459, Sept

2009.

[11] K. Kim, T. H. Chalidabhongse, D. Harwood, and L. Davis.

Real-time foreground-background segmentation using code-

book model. Real-Time Imaging, 11(3):172–185, June 2005.

[12] C. W. Lin, W. J. Liao, C. S. Chen, and Y. P. Hung. A spa-

tiotemporal background extractor using a single-layer code-

book model. In 2014 11th IEEE International Conference

on Advanced Video and Signal Based Surveillance (AVSS),

pages 259–264, Aug 2014.

[13] Z. Liu, K. Huang, and T. Tan. Foreground object detection

using top-down information based on em framework. IEEE

Transactions on Image Processing, 21(9):4204–4217, Sept

2012.

[14] L. Maddalena and A. Petrosino. The sobs algorithm: What

are the limits? In 2012 IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition Work-

shops, pages 21–26, June 2012.

[15] A. Miron and A. Badii. Change detection based on graph

cuts. In 2015 International Conference on Systems, Signals

and Image Processing (IWSSIP), pages 273–276, Sept 2015.

[16] N. M. Oliver, B. Rosario, and A. P. Pentland. A bayesian

computer vision system for modeling human interactions.

IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 22(8):831–843, Aug 2000.

[17] M. Sedky, M. Moniri, and C. C. Chibelushi. Spectral-360:

A physics-based technique for change detection. In 2014

IEEE Conference on Computer Vision and Pattern Recogni-

tion Workshops, pages 405–408, June 2014.

[18] A. Sobral and A. Vacavant. A comprehensive review of back-

ground subtraction algorithms evaluated with synthetic and

real videos. Computer Vision and Image Understanding,

122:4 – 21, 2014.

[19] C. Stauffer and W. E. L. Grimson. Learning patterns of ac-

tivity using real-time tracking. IEEE Trans. Pattern Anal.

Mach. Intell., 22(8):747–757, Aug. 2000.

[20] Y. Wang, P. M. Jodoin, F. Porikli, J. Konrad, Y. Benezeth,

and P. Ishwar. Cdnet 2014: An expanded change detection

benchmark dataset. In 2014 IEEE Conference on Computer

Vision and Pattern Recognition Workshops, pages 393–400,

June 2014.

[21] Z. Zivkovic. Improved adaptive gaussian mixture model

for background subtraction. In Proceedings of the 17th In-

ternational Conference on Pattern Recognition, 2004. ICPR

2004., volume 2, pages 28–31 Vol.2, Aug 2004.


