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Abstract—This paper proposes a novel digital image wa-
termarking method, namely SMLE, that allows to intelligently
embed a gray-scale watermark image into a color host image
in the wavelet domain. By decomposing a gray-scale image
to binary images in digits ordering from Least Significant Bit
(LSB) to Most Significant Bit (MSB), binary bits are efficiently
embedded to optimal wavelet coefficient blocks using a quan-
tization technique which encodes wavelet coefficient differences
to either of two pre-identified thresholds for corresponding 0-
bits or 1-bits. To boost visual quality, an embedding rule isim-
proved by equal spreading coefficient adjustment on two middle-
frequency sub-bands instead of only one as existing approaches.
Additionally, 2D Otsu algorithm, more proficient than 1D Otsu
algorithm for binary classification under attacking scenarios, is
modified to flexibly calculate an optimal threshold for high-
rate watermark extraction. According to experimental results,
our proposed SMLE watermarking model produces remarkable
imperceptibility as well as high robustness against commondigital
image transformations and mostly does better than other existing
methods at same payload rate.

Keywords—Color image watermarking, selective MSB-LSB em-
bedding, wavelet coefficient quantization, 2D Otsu thresholding.

I. I NTRODUCTION

Fostered by the rapid growth of mobile devices and the
Internet, the creation and sharing of digital images are ubiq-
uitously captured to reflect daily personal and social life.
Some critical challenges relating to transmission, storage, and
especially usage are highly noticeable in which the copyright
protection plays a crucial role. If image sharing is not protected
for free access, download and re-usage by others illegally,
personal images might become subjects to commercial or
other purposes by third parties without an owner consent. To
prevent such kind of problems, efficient and robust digital
watermarking techniques are urgently required for copyright
protection and authentication [1], [2].

Watermarking techniques can be categorized based on:
i) processing domain such as spatial domain and frequency
domain, and ii) extraction requirement such as blind, semi-
blind, and non-blind watermarking schemes. Due to natural
limitations of spatial domain based techniques, i.e., high
perceptibility of a host image and fragility of a watermark
under image processing operations, most image watermarking
techniques spread hidden information on the frequency domain
[3]–[6]. To be against geometric distortions, Niu et al. [3]
combined Nonsubsampled Contourlet Transform (NSCT) and
Support Vector Regression (SVR), however, the quality of

embedded images was quite worse than others in the field.
A wavelet quantization technique for blind watermarking was
developed by Run et al. [4], but it was defeated by some
common attacks such as rotation and lossy JPEG compres-
sion due to constant thresholding used for watermark extrac-
tion. Nezhadarya et al. [5] proposed an angle quantization
technique, called Gradient Direction Watermarking (QDWM)
in which binary bits were encoded into wavelet directional
gradients using Absolute Angle Quantization Index Modu-
lation (AAQIM). Extreme Learning Machine (ELM) [6], a
fast learning algorithm commonly used for Single Hidden
Layer Feedforward Neural Networks (SLFNs), was performed
in the wavelet domain to reach a pleasant tradeoff between
imperceptibility and robustness. Since the above approaches
are principally introduced to embed binary information, e.g.,
images and bit sequences are encoded into gray-scale or color
images, they therefore offered poor payload capacity, usually
measured by an embedding rate factor. Recently, Saboori et
al. [7] combined Principle Component Analysis (PCA) and a
histogram matching technique on the luminance component of
YUV color space to embed a gray-scale watermark into a color
host image. Although the method delivered high impercepti-
bility of watermarked images, it was weakly against common
attacks such as digital filtering, rotation, and additionalnoise.

In this work, we propose a blind digital image watermark-
ing model, namely Selective MSB-LSB Embedding (SMLE),
for color host images. Concretely, a gray-scale watermark
image is decomposed to component binary images following
LSB-MSB digits ordering and then encoded into a host im-
age onto middle-frequency sub-bands in the wavelet domain.
Compared to the existing work [8], we further improve an em-
bedding rule by equally spreading quantization adjustmenton
two sub-bands simultaneously to minimize the total coefficient
alternation. This leads to an increment of the embedded image
quality as well. In the extraction stage, an adaptive threshold
for binary bit classification is calculated by 2D Otsu algorithm
which is more efficient than 1D Otsu for hash conditions. We
benchmark SMLE with several common color host images
and gray-scale watermarks under various embedding strength
levels. Based on experimental evaluation, our proposed SMLE
achieves a high performance in terms of imperceptibility and
robustness, and so far outperforms existing approaches at same
payload capacity.

The remaining of this paper is organized as follows. The
second section describes our proposed watermarking model.
Experimental results are reported and discussed in the third
section. Finally, conclusions are outlined in the fourth section.978-1-5090-1897-0/16/$31.00c©2016 IEEE
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Fig. 1. The workflow of embedding process. The gray-scale watermark is
decomposed from a 8-bit image to 8 binary images (BIs) representing digits
ordering from LSB to MSB.

II. T HE PROPOSEDMETHODOLOGY

This section presents SMLE, an efficient image watermark-
ing method where a gray-scale watermark is embedded to a
color image. Both watermark embedment and extraction are
processed in the wavelet domain, concretely, a64× 64 image
is encoded into coefficients of the horizontal LH (low-high)
and vertical HL (high-low) sub-bands of a512 × 512 host
image using Discrete Wavelet Transform (DWT).

A. Watermark Embedding Process

At first, a gray-scale watermark imageW is decomposed
to eight binary imageswb1:b8 which represents digits ordering
from LSB to MSB as shown in Fig. 1. These binary bits are
then embedded to a host color imageI by a quantization
technique in which HL-LH coefficient differences∆i,k =
∣

∣HLk
i − LHk

i

∣

∣ of ith wavelet block inkth color channel are
quantized to predefined thresholdsδ0 andδ1 for 0-bits and 1-
bits respectively by altering wavelet coefficients. Following [8],
wavelet blocks are sorted in the ascending order of difference,
denoted∆S

i,k, to encode 0-bits for smallest difference blocks
and 1-bits for greatest difference blocks. Two optimal color
channels are chosen for binary embedding to minimize the
differences between∆S

i,k andδ0 for binary bitwi = 0 andδ1
for wi = 1. In particular, the watermark bits of four binary
imageswk#1 = {wb2,wb4,wb6,wb8} are encoded to the
first optimal channelk#1 and the watermark bits of remaining
imageswk#2 = {wb1,wb3,wb5,wb7} are then encoded to the
second optimal channelk#2. The channel selection is defined
as follows
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
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(1)
The notation−k#1 indicates remaining color channels except
k#1. Two quantization thresholds are calculated following (8)
whereN0 andN1 are the number of 0-bits and 1-bits ofwb1:b8;
λ is the robustness factor representing embedding strength of

a watermark on a host image. A large value ofλ deeply
embeds a watermark into a host image, i.e., a watermark
is more robust under several digital image transformations
while its imperceptibility on a host image is worse and worse.
Therefore,λ should be flexibly selected for a reasonable
balance between watermark robustness and image impercepti-
bility. For watermark embedment execution, an improved rule
is generally applied as follows (placingk∗ by k#1 and k#2

as two optimal channels corresponding to binary watermarks
in wk#1 andwk#2 respectively)
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For 1-bits encoding
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i
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(5)

where ∇0
i = ∆S

i,k∗ − δ0 and ∇1
i = δ1 − ∆S

i,k∗ represent
the modification of original coefficients required for encoding
0-bits and 1-bits, respectively. Compared to [8] where the
modification is employed on either LH or HL by∇0

i or ∇1
i ,

we split them equally for two sub-bands to preserve the visual
quality of watermarked images.

When the embedding process is completed, the modified
coefficient differences are either less thanδ0 or greater thanδ1.
Each color channel is recovered by Inverse Discrete Wavelet
Transform (IDWT). Moreover, an associated key containing
the information of channel blocks is generated and maintained
for original watermark recovery during the extraction process.

B. Watermark Extraction Process

The first step in extraction process is to calculate the
DWT coefficient differences of encoded blocks with a key,
created in the embedding stage to contain the channel and
block information. With a classification threshold, denoted δ∆
where δ0 < δ∆ < δ1, watermark bits are basically recovered
by a comparison rule

wi =

{

1 ∀∆i,k∗ ≥ δ∆
0 otherwise

(6)

It is important to note thatδ∆ must be determined with the
unknown quantization thresholds ofδ0 and δ1. Therefore,
an adaptive two-dimensional (2D) Otsu threshold [9], regu-
larly used for image segmentation, is calculated to classify
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Fig. 2. Test images used for evaluation. Top row: Lena, Mandrill, Peppers,
and Barbara as host images; middle row: Matlab, Burger King,Firefox, and
Starbucks as watermarks; and bottom row: Eight binary component images
are decomposed from the Matlab sample.

DWT blocks which present 0-bits and 1-bits embedment. By
maximizing the trace of between-class variance matrixSb, a
threshold vector(s = δ∆, t) is selected:

(s, t) = argmax
0 ≤ s ≤ L
0 ≤ t ≤ L

(Tr (Sb)) (7)

whereL = max(∆i,k∗ ) and the trace of discrete matrix is
expressed as follows (more details in Appendix):

Tr (Sb) =
(µTiω0 − µi)

2
+ (µTjω0 − µj)

2

ω0 (1− ω0)
(8)

In the paper, a fast recursive algorithm of 2D Otsu [10] is
employed to obtain the optimal thresholds. Compared to 1D
Otsu [11], 2D Otsu algorithm handles as well to the noise seg-
mentation challenge thanks to its contents-independent charac-
teristics. A gray-scale watermark image is finally reconstructed
following digits ordering from eight recovered binary images.

III. SIMULATION RESULTS AND DISCUSSION

In this section, we evaluate the perceptibility of embedded
images and the robustness of watermarks under various popular
image transformations. Four512 × 512 color images served
as host images and four64 × 64 gray-scale images used as
watermark images are shown in Fig. 2. Color Peak Signal-To-
Noise (CPSNR) and Structural Similarity Index (SSIM) are
used to measure the quality of watermarked images, i.e., the
perceptibility of a watermark in host images. The extraction
performance is quantitatively benchmarked by Normalized
Cross-Correlation coefficient (NCC) which approaches to unity
for high robustness.

A. Watermark Perceptibility

This section analyzes watermark perceptibility after the
embedment process by evaluating the visual quality of water-
marked images. The impact of robustness factorλ utilized to

TABLE I. AVERAGE PSNRAND SSIM OF EMBEDDED HOST IMAGES

λ
CPSNR (dB)

Matlab Burger King Firefox Starbucks
20 48.27±3.66 49.66±2.77 50.25±1.28 49.54±2.56
25 45.24±3.33 46.85±3.34 47.55±2.08 46.83±3.28
30 42.77±3.06 44.51±3.46 45.35±2.64 44.52±3.47
35 40.74±2.78 42.47±3.36 43.53±3.03 42.48±3.37
40 39.06±2.51 40.43±3.13 41.89±3.17 40.70±3.15
45 37.62±2.29 38.89±3.90 40.37±3.14 39.15±2.91
50 36.34±2.15 37.54±2.69 39.00±3.01 37.81±2.69

λ
SSIM

Matlab Burger King Firefox Starbucks
20 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.001
25 0.998±0.001 0.999±0.001 0.999±0.001 0.999±0.001
30 0.997±0.002 0.998±0.001 0.999±0.001 0.998±0.001
35 0.995±0.003 0.997±0.002 0.998±0.001 0.997±0.002
40 0.993±0.005 0.995±0.003 0.997±0.001 0.995±0.003
45 0.991±0.007 0.994±0.004 0.995±0.003 0.994±0.004
50 0.988±0.008 0.992±0.006 0.994±0.004 0.992±0.006
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Fig. 3. Watermark perceptibility comparison between the proposed embed-
ding rule and Huynh-The et al. [8] scheme: (a) CPSNR, (b) SSIM.

calculate quantization thresholdsδ0 and δ1 is further consid-
ered. Table I reports the average CPSNR and SSIM of four
samples on various values ofλ with different watermarks.
Obviously, the lower theλ is, the higher the CPSNR and
SSIM achieve due to the less wavelet coefficient modification
of the improved embedding rule. However a watermark will
be more fragile under outside attacks because a small distance
betweenδ0 andδ1 can not guarantee a high-quality extraction.
Therefore,λ should be selected for a pleasant tradeoff between
watermark robustness and host image imperceptibility.



Fig. 4. Popular transformations on embedded image of Lena (left to right
of two first rows): Non-Attack, Median Filtering5 × 5, Average Filtering
5 × 5, Motion Blurring 5 pixels, Down-Scaling128 × 128, Rotation0.50,
Cropping128×128, Gaussian Noise

(

µ = 0, σ2 = 0.0025
)

, Salt& Pepper
Noise (density = 5%), and Lossy JPEG Compression(Quality = 70%).
The bottom row shows the corresponding extracted watermarks.

Compared to the previous rule [8], the embedding rule in
this paper is significantly improved to boost the quality of
watermarked images. With the quantitative results plottedin
Fig. 3, our improved rule is entirely better, approximately3dB
of CPSNR and 0.004 of SSIM.

B. Watermark Robustness

This section explores the ability of our proposed method
in recovering hidden information against digital image trans-
formations like attack operations. For the latter, populartrans-
formations in the field are median filtering, average filtering,
linear motion blurring, size scaling, rotation, cropping,addi-
tional noise (Gaussian and Salt& Pepper), and lossy JPEG
compression. Fig. 4 illustrates the transformations and their
corresponding extracted watermarks with Lena and Matlab
samples. The NCC values of recovered watermarks corre-
sponding to aforementioned attacks are reported in Table
II with various values ofλ. It is noted that the results
are delivered as the average of four host images associated
with four watermarks. The robustness is typically improved
regarding the increment ofλ. However, our model reports
quite poor results with rotation and scaling due to following
reasons: i) DWT decomposes an image in the horizontal and
vertical dimensions while rotation operates in the diagonal, ii)
scaling operation makes the loss of detail information through
bicubic interpolation. The robustness is further investigated
with median filtering, average filtering, motion blurring, and
lossy JPEG compression under various intensities as plotted
in Fig. 5. As a result, the stronger the attack damages are, the
lower accuracy the watermark is generally recovered.

To prove the efficiency of 2D Otsu compared to 1D Otsu
for watermark extraction, we evaluate robustness with two
different thresholding algorithms. Table III presents NCCre-
sults of recovered watermarks in which 2D Otsu extracts more
precisely for median filtering, average filtering, and motion
blurring, especially in high levels of attacking. Although2D
Otsu looks more reliable than 1D Otsu in the task of calculating
a high-rate threshold for watermark extraction, it requires high
computational resource and performs unexpectedly in lossy
JPEG compression.

In the last experiment, we compare SMLE with Saboori’s

TABLE III. NCC COMPARISONBETWEEN 2D OTSU AND 1D OTSU

ALGORITHM FOR WATERMARK EXTRACTION USINGλ = 40

Median Filtering Average Filtering
Size 1D Otsu 2D Otsu Size 1D Otsu 2D Otsu
3 × 3 0.900± 0.066 0.895± 0.080 3 × 3 0.900± 0.079 0.894± 0.088
5 × 5 0.706± 0.107 0.720± 0.114 5 × 5 0.668± 0.108 0.666± 0.108
7 × 7 0.621± 0.120 0.639± 0.128 7 × 7 0.559± 0.117 0.574± 0.126
9 × 9 0.579± 0.119 0.597± 0.130 9 × 9 0.497± 0.117 0.507± 0.122

11 × 11 0.535± 0.112 0.559± 0.122 11 × 11 0.443± 0.111 0.452± 0.117
Motion Blurring JPEG Compression

No.Pixels 1D Otsu 2D Otsu QF (%) 1D Otsu 2D Otsu
3 0.923± 0.087 0.914± 0.083 10 0.693± 0.049 0.660± 0.065
5 0.815± 0.097 0.806± 0.102 30 0.828± 0.069 0.824± 0.058
7 0.713± 0.091 0.723± 0.095 50 0.852± 0.073 0.872± 0.044
9 0.637± 0.065 0.640± 0.063 70 0.865± 0.081 0.875± 0.069
11 0.578± 0.064 0.579± 0.065 90 0.902± 0.080 0.914± 0.056

TABLE IV. M ETHOD COMPARISONIN THE TERM OF ROBUSTNESS

FOR LENA SAMPLE

Image Saboori et al. [7] SMLE
Transformation RGB-B YUV-Y (λ = 35)
MedFilt 3 × 3 0.8510 0.8876 0.9574
AverFilt 3 × 3 0.8454 0.8512 0.9575
GaussFilt3 × 3 0.9717 0.9788 0.9999

Rotate 0.250 0.6234 0.6566 0.8519
Gaussian Noise 0.8101 0.8838 0.8902

Salt& Pepper Noise 0.9126 0.9488 0.9943
JPEG 20% 0.5543 0.6778 0.7235
JPEG 50% 0.6356 0.9060 0.8740
JPEG 70% 0.7456 0.9820 0.8854
JPEG 90% 0.9188 0.9836 0.8944

approach in terms of watermark robustness as shown in Table
IV. Saboori et al. [7] embedded a gray-scale watermark image
into a color host image following two color mode strategies,
e.g., the blue channel of RGB and the luminance channel
of YUV. Although our proposed method performs worse in
term of image imperceptibility as 39.48 dB vs 40.88 dB and
40.26 dB of RGB-B and YUV-Y respectively, it remarkably
outperforms Saboori’s approach in the most of digital image
transformations, except the lossy JPEG compression. It should
be noted that SMLE results in Table IV are reported as the
average of Lena sample with various watermarks.

IV. CONCLUSION

A novel digital color image watermarking method, called
Selective MSB-LSB Embedding (SMLE), has been proposed
in this work. By decomposing a gray-scale image to binary
images in which the digits order from LSB to MSB, a gray-
scale watermark is encoded into a color host image using
a quantization technique in the wavelet domain. Besides a
color channel selection, the quality of watermarked images
is significantly improved with an optimal embedding rule
which minimizes the total wavelet coefficient modification.
In addition, 2D Otsu algorithm is more efficient to extract
watermark under various digital image transformations com-
pared to 1D Otsu algorithm. The experimental results prove
that our proposed SMLE watermarking model achieves a high
performance in imperceptibility of embedded host images and
robustness of extracted watermarks. The proposed method
generally outperforms other similar watermarking approaches,
except the test of lossy JPEG compression. In the future, we
continuously validate the method on various large datasetsand
improve the extraction accuracy for lossy JPEG compression.



TABLE II. NCC OF EXTRACTED WATERMARKS UNDER DIFFERENT IMAGE TRANSFORMATIONS

Image λ

Transformation 20 25 30 35 40 45 50
Non-Attack 0.988± 0.017 0.991± 0.017 0.993± 0.015 0.994± 0.013 0.995± 0.012 0.999± 0.003 0.997± 0.010

MedFilt 5 × 5 0.697± 0.092 0.695± 0.098 0.707± 0.104 0.715± 0.110 0.720± 0.114 0.702± 0.104 0.705± 0.108
AverFilt 5 × 5 0.658± 0.100 0.658± 0.101 0.669± 0.109 0.669± 0.111 0.666± 0.108 0.666± 0.109 0.661± 0.109

Blurring 5 pixels 0.765± 0.090 0.788± 0.082 0.797± 0.089 0.804± 0.097 0.806± 0.102 0.810± 0.106 0.818± 0.109
Down-Scaling128 × 128 0.532± 0.103 0.538± 0.104 0.553± 0.116 0.562± 0.125 0.565± 0.128 0.567± 0.132 0.571± 0.137

Rotation 0.50 0.597± 0.089 0.597± 0.087 0.610± 0.086 0.614± 0.089 0.615± 0.094 0.613± 0.095 0.619± 0.097
Cropping128 × 128 0.892± 0.042 0.894± 0.040 0.895± 0.038 0.895± 0.037 0.896± 0.036 0.902± 0.041 0.902± 0.040

Gaussian Noise 0.682± 0.169 0.694± 0.155 0.724± 0.125 0.752± 0.099 0.790± 0.075 0.818± 0.054 0.838± 0.048
Salt& Pepper Noise 0.505± 0.182 0.650± 0.127 0.679± 0.130 0.718± 0.049 0.693± 0.075 0.652± 0.156 0.635± 0.172

JPEG 70% 0.847± 0.086 0.853± 0.075 0.862± 0.065 0.867± 0.061 0.857± 0.076 0.852± 0.075 0.849± 0.075
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Fig. 5. Average watermark extraction accuracy measured by NCC usingλ = 40 with four watermarks under various image transformations:(a) Median
Filtering, (b) Average Filtering, (c) Motion Blurring, and(d) Lossy JPEG Compression.

APPENDIX
2D OTSU ALGORITHM

Suppose a gray-scale image with the size ofM × N is
presented by a gray level intensityf (x, y) and its correspond-
ing local averageg (x, y), ranging from0 to L − 1, whereL
is the number of gray levels. Letqij is the total number of
occurrence (or frequency) of the pair(i, j) which is formed
by f (x, y) = i and g (x, y) = j. The joint probability mass
function in 2-dimensional histogram is defined:

pij =
qij

M ×N
(9)

The probability of two classes are given as:

ω0 =
s−1
∑

i=0

t−1
∑

j=0

pij ; ω1 =
L−1
∑

i=s

L−1
∑

j=t

pij (10)

The intensity means of two classes and the total mean of 2D
histogram are expressed as follows:
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L−1
∑

i=0

L−1
∑

j=0

jpij

]T

(11)



The between-class variance matrixSb is defined as:

Sb =
1

∑

k=0

ωk

[

(µk − µT ) (µk − µT )
T
]

(12)

By taking the trace ofSb following (8), where

µi =
s
∑

i=0

t
∑

j=0

ipij ; µj =
s
∑

i=0

t
∑

j=0

jpij (13)
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