An Ontology-based Hybrid Approach for Accurate
Context Reasoning

Muhammad Asif Razzaq', Muhammad Bilal Amin? and Sungyoung Lee'
Department of Computer Science and Engineering,
Kyung Hee University, 446-701, Republic of Korea
Email: {'asif.razzaq, 'sylee}@oslab.khu.ac.kr, 2m.b.amin@ieee.org

Abstract—The combination of ontology based context-
awareness and machine learning context classification is an
interesting research area. The determined contexts are obtained
using semantic reasoning based on context ontology developed
by expert using domain specific rules. This reasoning suffer
challenges of soundness and completeness in real-time deploy-
ment. This paper addresses the aforementioned challenges from
semantic reasoning by embracing machine learning modeling
and classification benefits. Machine learning relies on data, for
this we developed training and deployment phase for ontolog-
ical ABox assertions. Approximately 99.99% precision through
machine learning approach was achieved over 91.5% accuracy
with semantic reasoning. The statistical evaluation proves the
improvement in terms of accuracy for context prediction and
overall performance.
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I. INTRODUCTION

Context awareness provides good approximation to the
user interaction with the surroundings. Context awareness is
an essential ingredient of ubiquitous and pervasive computing
systems [5] acting as a key technology, which results for appli-
cations to be aware of situation of their users and interaction
with the environment. Dey and Abowd [1] defined the context
as "Context is any information that can be used to characterize
the situation of an entity." In [2] introduced the details of
context aware systems, and their role in developing appli-
cations for end users. Nowadays, the most dominant context
information consumers are mobile applications, which engage
different capabilities of sensors in the shape of context [14].
A comprehensive survey was conducted by [12], which gives
an overview of the challenges, opportunities and approaches
for using machine learning in the Semantic Web. In the study
by [6], provides sufficient evidence towards use of machine
learning techniques in developing context-aware applications.
These applications aim at sensing the context of the operating
environment for optimizing interaction among applications
and users. In the discussion by [7], compared accuracies
of ten machine learning algorithms involved in real-time
classification for interactive applications. Their work aimed
for increasing processing efficiency, which they achieved by
reducing training time for internet traffic real-time. A similar
work was also conducted by [9] in which they used SPARQL
query endpoint for learning relational Bayesian classifiers
over RDF data. Nishihara et al. [11] highlighted latency
and high throughput as the most important requirements for
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emerging machine learning applications. They proposed new
distributed execution framework with underlying candidate
approach having proof-of-concept architecture with significant
increased performance. In an IoT environment Kim et al.
[8] proposed seamless and effective integration of machine
learning and semantic technology to compensate each other. In
[10] authors illustrated comprehensive, highly inter-operable,
reproducible and exchangeable classification methodology for
ontology-based knowledge management and machine learning
approaches using spatial data sources. In this paper, we focused
on providing a machine learning based solution to increase
the reasoning accuracy in addition to ontology based context-
awareness in Mining Minds framework. The rest of the paper
is structured as follows, Section II presents the motivation and
objectives for this study. Section III describes overview of
Mining Minds framework. Section IV discusses our proposed
approach. Section V compares experimental evaluations. Fi-
nally, Section VI draw conclusions and future work.

II. MOTIVATION

Nowadays, more and more dynamic user’s contextual infor-
mation is becoming available to decision makers in context-
aware systems. In a multi-user, environment, while working
in real-time, with passage of time, ontological reasoning is
challenging, as it suffers delay, and data loss, as contexts
are needed in real-time. Also there is no mechanism of
retransmission for sensory data and benefits of delayed rea-
soning. In order to meet reasoning QoS, there is dire need to
strengthen real-time ontological reasoning for missing contexts
and overcome unnecessary delays while processing them. In
the study[13], it was observed that there are contexts for whom
membership is not inferred, and were named as unidentified
high-level contexts. These are contexts i.e. unidentified high-
level contexts, which do not belong to any of the classes
defined due to missing underlying contexts. Therefore, an
approach needs to be designed to make unidentified high-
level contexts to be part of context-aware system for better
decision making. The key contributions in this study includes:
motivating the use of machine learning algorithms for context
awareness; classifying unidentified HLC; filling the gap of
missing LLC and HLC, and increase in the accuracy and
effectiveness for over all context-aware reasoning.

III. MINING MINDS: FRAMEWORK

Mining Minds!, an innovative framework based on con-
cepts of the digital health and wellness paradigm, which

Thttp://www.miningminds.re kr/



provides personalized healthcare and wellness support. To
provide innovated services and utilize different tools Mining
Minds framework architecture is divided into five distinct
layers, Data Curation Layer, Information Curation Layer
(ICL), Knowledge Curation Layer, Service Curation Layer and
Supporting Layer. A detailed description of framework can be
found in [4].

A. High Level Context Awareness in a nutshell

In Mining Minds, the core technologies designed for
the inference and modeling of the user’s context constitutes
the ICL, which is further subdivided to Low-Level Con-
text Awareness (LLCA) and High-Level Context Awareness
(HLCA) [13]. LLCA contains four main context categories
Activities, Locations, Emotions and Food contexts
recognized through respective recognizers. They are realized
by applying machine learning approaches over sensory data
obtained through smart-watch (accelerometer and gyroscope),
smart-phone (accelerometer, gyroscope, GPS, camera and au-
dio features), and kinect (skeletal postures using depth camera)
[3]. Food items taken during meals are processed through
user’s specific tagged meal images using smart-phone. The
HLCA relies on Mining Minds Context Ontology which is
described in Section III-B.

B. Mining Minds Context Ontology

The Mining Minds Context Ontology?> (M3CO) model
contexts for human behaviour identification, additionally it
also triggers the framework to provide personalized health
and wellness services to its users. This work uses extended
M;CO by Villalonga et al. [13] with the inclusion of additional
nutrition information of the users in Mining Minds platform.
This scalable MoCO comprehensively models Low-Level Con-
texts (LLCs), High-level Contexts (HLCs) such as: Physical
Activity High-Level Context (PA-HLC) and Nutrition High-
Level Context (N-HLC).

In the development of OWL2 semantic ontologies, Classes
provide an abstraction mechanism for organizing resources
with similar characteristics. Every OWL class can be linked
with a set of individuals named as class extension. These
individuals in the class extension are identified as the instances
of the class. In Mining Minds, the subclass constraint
is used for designing and assigning classes and individu-
als for LLC, HLC, PA-HLC and N-HLC superclasses.
In Protégé, OWL subclass construct is used for defin-
ing class hierarchies. The superclass concept in this case
is LowLevelContext with subclass concepts of Activity,
Emotion, Locations and Food. Each subclass concepts have
further their subclass concepts associated with subclass
object property. Its meaning in OWL is exactly the same
for instance if the class description ClimbingStairs is defined
as subclass of class description Activity, then all set of
individuals in the class extension of ClimbingStairs must be
a subset of the set of individuals in the class extension of
Activity. This fulfills definition requirement for subclass.
These classes are associated to the HighLevelContext class
through the object properties hasActivity, hasLocation, hasE-
motion and hasFood. The hasActivity property has domain
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Fig. 1. Partial view of Mining Minds Context Ontology (M2CO)

as the LowLevelContext Context class and range as the Ac-
tivity class. Similarly, hasLocation, hasEmotion and hasFood
properties have domains as LowLevelContext class and ranges
Location, Emotion and Food classes respectively. The dif-
ferent recognized activities are modeled as 17 disjoint sub-
classes of the Activity class. Similarly the Location class
has 9 disjoint subclasses used to model the detected loca-
tions. The recognized emotions are modeled through the 9
disjoint subclasses of the Emotion class. PA-HLC are mod-
eled based on activities, locations and emotions.
PA-HLC includes OfficeWork, Housework, Sleeping,
Commuting, Exercising, Amusement, Gardening,
and Inactivity discussed in detail with definitions by Vil-
lalonga et al. [13]. N-HLC consists of major dominating nutri-
ent like Carbohydrates, Protein and Fats determined
using LLC. These N-HLC are modeled on LLC Food based
on 57 food-item list, categorized further into 10 broader groups
(Fig. 1). This categorization and major nutrient identifications
are performed in accordance with guidance and suggestions
provided by United States Department of Agriculture’ (USDA)
on daily food consumptions.

2M3CO: https://goo.gl/EBA4nO

3http://www.usda.gov/wps/portal/usda/usdahome



IV. OUR APPROACH

In this work, we presented a novel conjunctive approach
for ontology based reasoning and machine learning for real-
time context-awareness modeling and classification. Machine
learning supports inferencing by classifying high-level contexts
based on ABox dataset stored in Jena triple store, in Mining
Mining Context Ontology Storage. We performed all experi-
ments on a single 64-bit machine, having Microsoft Windows
7 on the top of AMD A10-5800K APU with 12 GB of RAM.
Java engine was executed with Eclipse IDE Luna that ran
using JRE 1.8.0_45-b15 64-bit version. The implementation*
of high-Level context architecture is performed in Maven’
based project management with Java along-with available open
source library, Apache Jena® (v2.11.2). For experimental eval-
uation, we collected real-time dataset by involving 20 users on
different days and timings. User’s were provided with smart-
watch, smart-phone, and skeletal postures were detected using
indoors kinect facilitated with depth camera. We collected
26,298 HLCs (i.e. PA-HLCs and N-HLCs) through HLCA
reasoning. By analyzing these contexts, it was found that there
are almost 83,757 LLC, which fulfilled the ontological rule
definitions for HLCs.

A. Ontology based reasoning in HLCA

The main purpose of ontology based context reasoning
is to check the consistency of contexts as well as deducing
high-level implicit context information from low-level explicit
contexts. Ontological reasoning uses constraint based sub-
sumption and equivalence rules developed by domain expert
while modeling MoCO. We considered Pellet’ reasoner with
essential characteristics of its deductive expressivity, tableau-
based methodology and OWL-API support for performing
reasoning and provision of ground truth using M>CO in HLCA.

B. ABox Classification using Machine Learning

In contrast to ontological reasoning, machine learning
works on the basis of data-driven approaches. Using input
selected features, target class is predicted based on trained
model. The dominating feature for machine learning approach
is that this does not require domain expert intervention and
gives high accuracy. During ontological reasoning the inferred
PA-HLCs and N-HLCs are stored in triple form to Jena-
TDB®. This information can be retrieved using SPARQL’
from Context Ontology Storage i.e. Jena-TDB in RDF/XML
graph form, which comprises of recognized HLCs, LLCs and
user’s meta-data such as userid, starttime, endtime etc. After
carefully analyzing the collected dataset, it was learned that
almost 91.50% were correctly inferred, we need to investigate
other contexts which could not be inferred due to missing low-
level contexts. For this a generic machine learning approach
is shown in (Fig. 2) comprising of standardized methods
for transformation of RDF/XML to arff, essential machine
learning tasks for feature vector extraction from RDF graphs,
algorithm selection and model training using extracted feature

4Source code at github: https://goo.gl/0ZFNif
Shttps://maven.apache.org/

Shttps://jena.apache.org/
7https://www.w3.0rg/2001/sw/wiki/Pellet
8https://jena.apache.org/documentation/tdb/
“https://jena.apache.org/documentation/query/index.html
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vectors (Activities, Locations, Emotions, Food LLCs and Tar-
get HLCs i.e. PA-HLCs & N-HLCs) in off-line manner. The
trained models were later tested with test dataset to classify
and predict HLCs for unidentified HLCs before exhibiting to
real-time deployment for context-awareness.

V. EXPERIMENTAL EVALUATIONS

In this section, we discussed comprehensive evaluations
for ontology-based reasoning and ML based prediction of
unidentified HLCs for HLCA in Mining Minds health platform.
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Fig. 3. Precision, Recall and F-Measure for Inferred HLCs using M2CO on
Real-time dataset

1) Evaluation Metrics: For a collected dataset, we evalu-
ated how HLCA correctly inferred high-level contexts based
on low-level contexts for 15-second sliding window. We used
the precision and recall measures to evaluate HLCA in Mining
Minds as shown in (Fig. 3) to address our performance chal-
lenge. In order to classify Unidentified HLC in HLCA, we used
six algorithms within Weka Explorer, which are NdiveBayes,
KStar, IBKm J48, RandomForest, and RandomTree. These
algorithms were applied under ML approach to both training
and deployment phases. Fig. 3 illustrates analysis for Precision,



Recall and F-Measure in order to evaluate inference perfor-
mance of MyCO using 10-fold cross validation. It’s evident
that RandomForest algorithm produced optimum results of
91.5% precision, compared with other algorithms with high
values in Precision, Recall and F-Measure. In addition to that,
Kstar provided the lowest 87.5% when compared with other
algorithms. The high inferencing accuracy proved that HLC are
rarely misclassified but the problem arise when missing LLCs
lead to wrongly recognized HLCs or Unidentified HLCs.

2) Performance Evaluation: In this section, we present an
analysis of M2CO and ML based classification. We achieved
91.5% precision through ontology based reasoning, remaining
HLCs were not recognized correctly because of missing LLCs,
for this we adapted training phase in ML approach (Fig. 2).
We trained and tested our dataset for different algorithms
as discussed in previous section. We provided test dataset
comprising Unidentified HLC to the trained model in order to
predict their HLC class. The probabilities of predicted classes
are plotted in (Fig. 4). As it is clearly seen that instances
are classified with high probabilities for class prediction, we
ignored values less than 0.50 and analyzed that probabilities
greater than 0.50 were predicted correctly, which resulted
in accuracy increase up to 99.99%. This proved to be very
effective technique used to classify missing HLCs in HLCA.
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Fig. 4. Unidentified HLC Classification using test dataset over learned models

VI. CONCLUSIONS AND FUTURE WORK

We presented an ontology-driven HLCA under Mining
Minds Platform enabling richer semantic basis for interpreting
the HLCA, as compared to approaches, which employ the
database schema directly as the basis. In this paper, we devel-
oped methodology to address inferencing performance using
machine learning techniques. The proposed approach meets
the stringent accuracy and completeness requirements of real-
time reasoning in Mining Minds, a context-aware platform.
ML based approach fortifies the identified HLCs, in addition
to ontological based approach, by enhancing the precision
performance from 91.5% to 99.99%. We proposed an hybrid
approach to handle complex context-aware definitions real-
time for ontology based context recognition and ML based
supervised context classification. In future, we will investigate
correlation between ontology characteristics and ML learning
algorithms.
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