Evaluating Scheduling Strategies in LOD Based
Application

Usman Akhtar, Muhammad Bilal Amin ¥, and Sungyoung Lee
Department of Computer Science and Engineering,
Kyung Hee University, South Korea, Yonsin-si, 446-701
tKorea Research Foundation (KRF) and UCLab, Kyung Hee University
Email: {usman,sylee}@oslab.khu.ac.kr, m.b.amin@ieee.org

Abstract—In this paper, we have evaluated the effectiveness
of scheduling strategies in Linked Open Data based applica-
tion for keeping local data caches up-to-date. We argue that
the healthcare organizations are publishing data publicly, but
consuming of data is difficult due to rapid growth of the linked
data cloud. Most of the applications that are consuming linked
data suffer from challenges such as change estimation and
accuracy of index for keeping the data fresh for visualization.
In this work, we have evaluated the quality of the data updates
performed by the scheduling strategies. We have implemented
the state-of-the-art web scheduling approaches; ChangeRatio and
ChangeRate on linked dataset. We have concluded our evaluation
that the strategies based on ChangeRate performed better than
the ChangeRatio.

I. INTRODUCTION

Linked Open Data (LOD) is a global information space
for structurally represented and connect data. The LOD cloud
provides a flexible way to integrate the data according to
the LOD principles. Therefore, LOD has grown significantly
with new content getting added and removed regularly. The
changing behavior of Linked Data is extremely important in
the applications such as data caching [1], web incremental
crawlers [2] and linked data based health information systems.
However, there exist some important challenges that need to
be tackled by the scheduling strategies.

A. Identified Challenges

The first challenge is the sensitivity of the index model.
Change in the LOD sources are not automatically propagated
to the local copies; therefore due to the updated information
there is a risk of having an inaccurate index and cache. To
avoid the communication overhead most of the applications
rely on the local copies, consequently the application has to
synchronize the local copy with the data at the origin. Index
models also rely on other resources like network bandwidth
as spending efforts on updating requires more bandwidth to
achieve the higher accuracy.

The second challenge is incomplete change history. In many
of the scenarios, complete change information of the element
is unavailable. As LOD source do not propagate change
automatically, they rely on scheduling strategies to identify the
changes that have occurred. There are several quality measures

978-1-5386-1101-2/17/$31.00 (©2017 IEEE

that have been proposed in the literature that are helpful in
detecting the change in the LOD when updated. [3].

LOD sources have unreliable availability, as access to their
repositories regularly turns offline, producing a denial of
service. This plausible nature of LOD is unknown to the
update strategies. Furthermore, as resources are often moved,
removed, or even updated, thus, resulting in broken repository
links.

B. Motivation

There is a need of user-friendly techniques to represent,
query, and visualize the linked data. Healthcare organization
such as World Health Organization (WHO), publish health
related data online. However, most of the data are either
available in Excel or PDF format by the portal. On the other
hand, linked data provides an efficient way to publish the data
and alleviate many challenges.

Figure 1. shows the typical architecture of LOD based
application which provides the flexibility and usability where
the data consumer such an expert is able to explore and
visualize the data. Whenever the change occurs in the sources
the scheduling strategies should keep the local copy of the data
up-to-date. The main core of the architecture is the service
and the model layer where the external sources are converted
into the RDF triples and stored in the triplestore. As the data
keep on changing the effective change estimation is needed to
update the local copies of the data considering the limitation
on the bandwidth. The purpose of this work is to evaluate the
effectiveness of these scheduling strategies.

C. Solution Strategies

There are numerous applications that are related to the
change detection and notification services [4] but the work-
ing implementations are rare. The estimation of the change
proposed by [5], which estimate the change frequency of the
web and to improve the incremental web crawler. Identified
solution strategies such as HTTP Meta-data Monitoring [6]
uses the header timestamps to detect the change in the data.
Another solution strategy to estimate the change is Dynamic
Linked Data Observatory (DYLDO) [7] which is fetching the
entire content and determining locally. Hence, the existing

Data Cansumer

Linked Data
Explorer

Import / Export

Resource Web Service Web Service

(Linked Data)

(REST, JSON)

Endpoint Service

(Configuration) (Query API)

Scheduling
Strategies

Model Layer Service Layer Web Service Layer

\
,
!
.
,
,
!
!
,
.
.

SPARQL Service 1
!
.
.
!
,
,
!
.
,
,
,
,

(Triple Store) (SPARQL Query)

Converted
Triples

[N

N

oooooo

aaaaaa

Fig. 1. Typical Workflow diagram of medical LOD application from querying,
conversion and visualization

solution strategies are unable to cope the scalability and
dynamics of the LOD cloud in an effective way.

In this paper, we have evaluated the effectiveness of the
scheduling strategies on evolving Linked Dataset. We have
implemented the ChangeRatio and ChangeRate scheduling
strategies. Our main contribution is to measure the effective-
ness of the updates performed by these scheduling strategies.
We have evaluated the effectiveness of the updates considering
the limitation on the bandwidth. Our goal is to show which
updated strategies produce better updates in term of the data
accuracy and freshness.

II. RELATED WORK

There are various implementations that looked into the
characteristics of the LOD cloud. Some have conducted the
structural analysis in order to obtain the characteristics of
the data [8]. In literature, there are various works that have
investigated on the characteristics of LOD and estimation of
the change. Researchers in [5] have estimated the change
frequency of data to improve the web crawlers, web caches
and to help the data mining tasks. Other works are related to
change in content of a RDF documents that is crawled for
the period of 24 weeks. According to the author Etag and
Last-modified HTTP header were applied to typically indicate
the change. There is a variety of existing works related to the
change detection of the query results on dynamic data sets.
Among them the most prominent work on the query caching
is [1], but the working implementations are rare. Currently,
there is a limited research that focuses on the impact of the
cache on LOD. Most of the available work is rich in database
literature where query cache occurs; however cache with the
SPARQL engine is not considered relevant [9].

Since, LOD cloud is a global information space and it is
structurally connect data items. The distributed web based
nature of data motivates many application to keep local copies
of the data. Due to the dynamic nature of the linked data
many applications need to keep updating the local copy of
the data. The main problem is when to perform the updates.
To solve this problem researchers have investigated scheduling
update strategies to periodically update the LOD caches. We
also investigate update strategies that are proposed in the
literature for updating linked data caches. Another worth
mentioning work by Magnus Knuth et al. [10] discusses the
problem of scheduling refresh queries for large number of
registered SPARQL queries. They have investigated various
scheduling strategies and compared them experimentally. The
main contribution of their work is an empirical evaluation on
the real world SPARQL queries.

III. EXISTING SCHEDULING STRATEGIES

The aim of the scheduling strategies is to prioritize what
data sources should be first considered in order to keep the
local data caches up-to-date.

A. Scheduling Strategies Based on ChangeRatio

ChangeRatio [11] scheduling strategies are based on the
past change history of the LOD sources. These strategies can
estimate "how often" the item changes and then decide when to
schedule the sources. For instance, if the scheduled strategies
identifies that the items have changed then it is easy to estimate
how often the sources changed based on the previously ob-
served history of the item. Informally, ChangeRatio strategies
count how many items in the LOD cloud changes over each
snapshot. ChangeRatio defines the number of the changes in
the LOD and is represented as:

ChangeRatio = Z w;.1(0;) (1)
i€R

In equation 1, the function 1(o0;) indicate the change oc-
curred in an item. ChangeRatio is useful to store the change
history of the items in the Linked Open Data (LOD).

B. Scheduling Strategies Based on ChangeRate

LOD sources change frequently, instead of finding the
change between the two snapshots it is better to find the
evolution over the period of time. Scheduling strategies based
on the ChangeRate quantify the change and measure the
change of the LOD cloud. The ChangeRate of the LOD can
be represented as A that quantifies the changes between the
two datasets such as different snapshot of the LOD sources.
The strategies based on the ChangeRate quantify the evolution
of the LOD over the period of the time [10]. It is represented
as follows:

TN (X, X,
ChangeRate = Z %
i=0 i — li—1

2

TABLE I
THEORETIC COMPARISON OF LINKED DATA SCHEDULING STRATEGIES
Strategies Feature Strength Weakness
Measure how Update from Does not quan-
. much dataitems most to the least tify the evolu-
ChangeRatio . R .
in cache that change linked tion over a pe-
are out-to-date. data source. riod of time.
Compare the Prioritize the
data sets based sources based Does not cap-
ChangeRate on the distance on the Jaccard ture the change
function such distance from behaviour of the
as Jaccard and most to least data source.

dice coefficient.

data source.

These scheduling strategies calculate the aggregation of
the results changes over time by using the Jaccard distance
between the subsequent results. In Table 1, we compare both
the state-of-the-art strategies on theoretical point of view.
One of the interesting finding during the comparison is the
limitation on the evolving dataset. Both the strategies unable
to cope the dynamics of the linked data.

IV. EXPERIMENTAL SETUP

In this section, we have evaluated the effectiveness of the
scheduling strategies. Our main goal is to find out the most
appropriate strategies for keeping LOD caches up-to-date.

A. Dataset

For our experiments, we use the Dynamic Linked Data
Observatory (DYLDO) [7], which monitor the fixed set of the
Linked Open Data documents on weekly basis. In DYLDO !,
each week fixed set of documents are retrieved and stored. The
DYLDO datasets contain a large number of the well-known
LOD sources such as dbpedia.com. On average, DYLDO
contains more than 600 data sources. On every snapshot the
number of the sources goes online and offline, due to the
dynamic nature of the linked data cloud. For better insights
into our evaluation, we have chosen the dbepedia.com in
every snapshot over the three months. In each snapshot of the
dbpedia.com the number of the sources increases or decrease.
On average there are 3981 sources available in dbpedia.com.
In every snapshot, many of the statements are added and
removed. On average 4796 statements are added, and 4800
statements are removed from the three months period.

B. Queries

It is essential to use queries that matches with the dataset.
We use the Linked SPARQL Queries dataset (LSQ)? that
contain query for Dbpedia and matches the current structure of
the data. These LSQ provide a support to query different snap-
shots of the datasets and check the dynamics of the sources.
Whenever data sources change the scheduling strategies need
to prioritize which data sources need to update.

Thttp://swse.deri.org/dyldo/data/
Zhttp://aksw.github.io/LSQ/

C. Evaluation Matrix

We have evaluated ChangeRatio and ChangeRate to check
the quality of the local data caches updates. The quality of
the update strategy is measured in terms of the recall and
precision.

—Effectiveness: Scheduling strategies should only evaluate
the data that have changed, which reduced the load on the
SPARQL endpoints.

—~Quality Measures: The quality of the updates can be
measured in term of the Precision and Recall [12]. The purpose
is to find out the strategies that perform better local update of
the data caches. We assume that the data is fetched at the fixed
point on time ¢ and we denote the size of the dataset that is
fetched from the source by | X, ;| that contain the number of
the triples in a dataset at context c¢ at the point in time t.
Whereas precision is defined as the portion of the cached data
that are up-to-dated and recall is the portion in the LOD cloud
that is identical to the cached data.

Do IXet M Xer
PR AP

2 Xt M Xel
> T Xe]

When the application wants to update the local copies from
the data sources ceC' at the time ¢;1.1. The complete dataset can
be fetched in time X, ,. However, this would also consider
to retrieve the most recent version of the data X, ,. Due to
the limitation on the bandwidth only the fraction of the data
can be retrieved from the LOD cloud.

Precision =

3)

Recall = “4)

D. Experimental Results

Overall the ChangeRate strategies perform better on the
datasets considering the limitation on the bandwidth. However,
the ChangeRatio show very similar performance as LOD
sources vary in size. Most of the time the changes are random
and both the ChangeRate and the ChangeRatio strategies work
very well on these data sources. Both of these strategies are
also performing well on the limited bandwidth provided. A
strategy based on the ChangeRate relatively detects many
updates but neglects the less evolving sources. On the other
hand, ChangeRatio detects the fair amount of changes. It is
also observed that strategies that are based on the previously
observed changes are able to produce better results. Both of
the ChangeRate and the ChangeRatio neglect the less frequent
changes of the sources.

Table.Il shows that scheduling strategies based on the
ChangeRate outperform the ChangeRatio as it rely on the past
result history of the query. Although ChangeRatio executes
lot of irrelevant queries, it performs better and it detects rela-
tively many updates without execution of too many irrelevant
queries. The quality of the scheduling strategies are measured
in term of the precision and recall as shown in the Fig.2.
where ChangeRate scheduling strategies perform better quality
updates than the ChangeRatio for very small bandwidth usage.

TABLE II
EVALUATION EFFECTIVENESS OF THE SCHEDULING STRATEGIES

Scheduling Strategies total query execution

Irrelevant Relevant ~ Maximum miss

2,395,472
1,986,100

Change Ratio
Change Rate

2,381,306
1,970,895

14,166 7
15,205 5

S
o
St
T
!

o
NeJ
T
|

0.87
0.8
\ \

ChangeRatio ChangeRate

#Quality Outcomes

0.85

’ [0 Precision [l I Recall

Fig. 2. Showing the Quality Outcomes of ChangeRatio and ChangeRate of
Scheduling Strategies

We started with the perfect caches and after some time when
the data evolve we rescheduled both the strategies as our main
goal is to only capture the change part of the sources instead
of download all the resources.

A very similar trend confirms the output of the evaluation
for the fixed bandwidth scenario. The update is performed by
the scheduling strategies and it is observed that even in the
limited bandwidth ChangeRate perform better quality of the
updates. Overall, the results from the evaluation confirm that
the strategies based on the ChangeRate are more appropriate
to estimate and update the local data caches.

V. CONCLUSION

Linked open data provide an efficient way to publish
the data. Although these data are evolving, hence it brings
some challenges related to the sensitivity of the index
model, incomplete change history and unavailability of the
data sources. A lot of LOD applications use scheduling
strategies to keep the local data caches up-to-date. In the
limited bandwidth, scheduling strategies need to prioritize
which sources to schedule and predict for changes. We have
evaluated the effectiveness of different strategies and observed
that the ChangeRate based strategies are more appropriate to
estimate the changes even in the limited resource provided.
Our evaluation results shows that the strategies based on
the ChangeRate reduces the load on the SPARQL endpoint
and effectively execute the queries. Whenever the change
occurs in the LOD cloud ChangeRate based scheduling
perform quality updates on the local data caches. In the
future, we will combine the different scheduling into a hybrid

scheduler to overcome the shortcoming of the ChangeRate
and ChangeRatio strategies.

Acknowledgments: This work was supported by the In-
dustrial Core Technology Development Program (10049079,
Develop of mining core technology exploiting personal big
data) funded by the Ministry of Trade, Industry and Energy
(MOTIE, Korea), this research was also supported by Korea
Research Fellowship program funded by the Ministry of Sci-
ence, ICT and Future Planning through the National Research
Foundation of Korea(NRF-2016H1D3A1938039) and this re-
search was also supported by the MSIT(Ministry of Science
and ICT), Korea, under the ITRC(Information Technology
Research Center) support program(IITP-2017-01629) super-
vised by the IITP(Institute for Information & communications
Technology Promotion).

REFERENCES

[1] M. Martin, J. Unbehauen, and S. Auer, “Improving the performance of
semantic web applications with sparql query caching,” The Semantic
Web: Research and Applications, pp. 304-318, 2010.

J. Cho and H. Garcia-Molina, “The evolution of the web and implica-
tions for an incremental crawler,” Stanford, Tech. Rep., 1999.

H. Cho, Junghoo, “Synchronizing a database to improve freshness.”

A. Passant and P. N. Mendes, “sparqlpush: Proactive notification of data
updates in rdf stores using pubsubhubbub.” in SFSW, 2010.

J. Cho and H. Garcia-Molina, “Estimating frequency of change,” ACM
Transactions on Internet Technology (TOIT), vol. 3, no. 3, pp. 256-290,
2003.

R. Dividino, A. Scherp, G. Groner, and T. Grotton, “Change-a-lod: does
the schema on the linked data cloud change or not?” in Proceedings of
the Fourth International Conference on Consuming Linked Data-Volume
1034. CEUR-WS. org, 2013, pp. 87-98.

T. Kifer, J. Umbrich, A. Hogan, and A. Polleres, “Towards a dynamic
linked data observatory,” LDOW at WWW, 2012.

S. Auer, J. Demter, M. Martin, and J. Lehmann, “Lodstats—an extensible
framework for high-performance dataset analytics,” in International
Conference on Knowledge Engineering and Knowledge Management.
Springer, 2012, pp. 353-362.

K. Kjernsmo, “A survey of http caching implementations on the open
semantic web,” in European Semantic Web Conference. Springer, 2015,
pp- 286-301.

M. Knuth, O. Hartig, and H. Sack, “Scheduling refresh queries for
keeping results from a sparql endpoint up-to-date (short paper),” in OTM
Confederated International Conferences” On the Move to Meaningful
Internet Systems". Springer, 2016, pp. 780-791.

J. Cho and A. Ntoulas, “Effective change detection using sampling,” in
Proceedings of the 28th international conference on Very Large Data
Bases. VLDB Endowment, 2002, pp. 514-525.

W. Zheng, L. Zou, W. Peng, X. Yan, S. Song, and D. Zhao, “Semantic
sparql similarity search over rdf knowledge graphs,” Proceedings of the
VLDB Endowment, vol. 9, no. 11, pp. 840-851, 2016.

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

