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 Abstract - Principle Component Analysis (PCA) technique 
is an important and well-developed area of image recognition 
and to date many linear discrimination methods have been put 
forward. Basically, in PCA the image always needs to be 
transformed into 1D vector, however recently two-dimensional 
PCA (2DPCA) technique have been proposed. In 2DPCA, PCA 
technique is applied directly on the original images without 
transforming into 1D vector. In this paper, we propose a new 
2DPCA-based method that can improve the performance of 
the 2DPCA approach. In face recognition where the training 
data are labeled, a projection is often required to emphasize 
the discrimination between the clusters. Both PCA and 2DPCA 
may fail to accomplish this, no matter how easy the task is, as 
they are unsupervised techniques. The directions that 
maximize the scatter of the data might not be as adequate to 
discriminate between clusters. So we proposed a new 2DPCA-
based scheme which can straightforwardly take into 
consideration data labeling, and makes the performance of 
recognition system better. Experiment results show our 
method achieves better performance in comparison with the 
2DPCA approach with the complexity nearly as same as that of 
2DPCA method. 
 
 Index Terms - Principle component analysis (PCA), Two-
dimensional PCA (2DPCA), Two-dimensional Weighted PCA, 
face recognition. 
 

I.  INTRODUCTION 

Principal component analysis (PCA), also known as 
Karhunen-Loeve expansion, is a classical feature extraction 
and data representation technique widely used in the areas 
of pattern recognition and computer vision. Sirovich and 
Kirby [1], [2] first used PCA to efficiently represent pictures 
of human faces. They argued that any face image could be 
reconstructed approximately as a weighted sum of a small 
collection of images that define a facial basis (eigenimages), 
and a mean image of  the face. Within this context, Turk and 
Pentland [3] presented the well-known Eigenfaces method 
for face recognition in 1991. Since then, PCA has been 
widely investigated and has become one of the most 
successful approaches in face recognition [4], [5], [6], [7]. 
Penev and Sirovich [8] discussed the problem of the 
dimensionality of the “face space” when eigenfaces are used 
for representation. Zhao and Yang [9] tried to account for 
the arbitrary effects of illumination in PCA-based vision 

systems by generating an analytically closedform formula of 
the covariance matrix for the case with a special lighting 
condition and then generalizing to an arbitrary illumination 
via an illumination equation. However, Wiskott et al. [10] 
pointed out that PCA could not capture even the simplest 
invariance unless this information is explicitly provided in 
the training data. They proposed a technique known as 
elastic bunch graph matching to overcome the weaknesses 
of PCA. 

Recently, two PCA-related methods, independent 
component analysis (ICA) and kernel principal component 
analysis (Kernel PCA) have been of wide concern. Bartlett 
et al. [11] and Draper et al. [12] proposed using ICA for 
face representation and found that it was better than PCA 
when cosines were used as the similarity measure (however, 
their performance was not significantly different if the 
Euclidean distance is used). Yang [14] used Kernel PCA for 
face feature extraction and recognition and showed that the 
Kernel Eigenfaces method outperforms the classical 
Eigenfaces method. However, ICA and Kernel PCA are 
both computationally more expensive than PCA. The 
experimental results in [14] showed the ratio of the 
computation time required by ICA, Kernel PCA, and PCA 
is, on average, 8.7: 3.2: 1.0. 

In all previous PCA-based face recognition technique, 
the 2D face image matrices must be previously transformed 
into 1D image vectors. The resulting image vectors of faces 
usually lead to a high dimensional image vector space, 
where it is difficult to evaluate the covariance matrix 
accurately due to its large size and the relatively small 
number of training samples. Fortunately, the eigenvectors 
can be calculated efficiently using the SVD techniques and 
the process of generating the covariance matrix is actually 
avoided. However, this does not imply that the eigenvectors 
can be evaluated accurately in this way since the 
eigenvectors are statistically determined by the covariance 
matrix, no matter what method is adopted for obtaining 
them. So recently in [16], a new PCA approach called 
2DPCA, is developed for image feature extraction. As 
opposed to conventional PCA, 2DPCA is based on 2D 
matrices rather than 1D vectors. That is, the image matrix 
does not need to be transformed into vector. Instead, an 
image covariance matrix can be constructed directly using 
original image matrices. In contrast to the covariance matrix 
of PCA, the size of the image covariance matrix using 
2DPCA is much smaller. As a result, 2DPCA has two 
important advantages over PCA. First, it is easier to 
evaluate the covariance matrix accurately. Second, less time 
is required to determine the corresponding eigenvectors. 
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However, in face recognition where the data are 
labeled, a projection is often required to emphasize the 
discrimination between the clusters. Both PCA and 2DPCA 
may fail to accomplish this, no matter how easy the task is, 
as they are unsupervised techniques. The directions that 
maximize the scatter of the data might not be as adequate to 
discriminate between clusters. In this paper, our proposed 
approach can straightforwardly take into consideration data 
labeling, which makes the performance of recognition 
system better. The remainder of this paper is organized as 
follows: In Section 2, the 2DPCA method is reviewed. The 
idea of the proposed method and its algorithm are described 
in Section 3. In Section 4, experimental results are presented 
on the ORL and Yale face databases to demonstrate the 
effectiveness of our method. Finally, conclusions are 
presented in Section 5. 

II.  TWO-DIMENSIONAL PCA 

In this section, we review the basic notions, essential 
mathematical background and  algorithm of 2DPCA 
approach that is needed for subsequent derivations in next 
sections. 

Theorem 1. Let A be an nxn  symmetric matrix. 
Denoted by 1 ... nλ λ≥ ≥ its sorted eigenvalues, and by 

1,..., nw w the corresponding eigenvectors. Then 

1,..., ( )mw w m n<  are the maximizer of the constrained 

maximization problem max ( )Ttr W AW  subject to 
TW W I= . 
For the proof, we can reference [18]. 
In 2DPCA approach, the image matrix does not need to 

be previously transformed into a vector, so a set of N sample 
images is represented as 1 2{ , ,..., }NX X X  with 

kxs
iX ∈ . The total scatter matrix  is defined as 
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= − −∑  (1)
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1 N
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X i
i

X
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µ
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= ∈∑  is the mean image of all 

samples. kxk
TG ∈  is also called image covariance 

(scatter) matrix. 
A linear transformation mapping the original kxs  

image space into an mxs feature space, where m k< . The 
new feature matrices mxs

iY ∈  are defined by the 
following linear transformation : 

 ( )T mxs
i i XY W X µ= − ∈  (2)

where 1, 2,...,i N=  and kxmW ∈  is a matrix with 

orthonormal columns. In 2DPCA, the projection optW   is 

chosen to maximize ( )T
Ttr W G W . By Theorem 1, we 

have 1 2[ ... ]opt mW w w w=  with { 1,2,..., }iw i m=  is the 

set of n-dimensional eigenvectors of  TG  corresponding to 
the m largest eigenvalues. 

After a transformation by 2DPCA, a feature matrix is 
obtained for each image. Then, a nearest neighbor classifier 
is used for classification. Here, the distance between two 
arbitrary feature matrices iY  and jY is defined by using 

Euclidean distance as follows : 

 2

1 1
( , ) ( ( , ) ( , ))

k s

i j i j
u v

d Y Y Y u v Y u v
= =

= −∑∑  (3)

Given a test sample tY , if ( , ) min ( , )t c t jj
d Y Y d Y Y= , then 

the resulting decision is tY belongs to the same class as cY . 

III. TWO-DIMENTIONAL WEIGHTED PCA 

In the following part, we present our proposed method. 
Firstly we will take a look at some necessary background. 
Let , mxnA B∈ , then ciA  and rjA  are thi column vector 

and thj row vector  of matrix A . The Euclidean distance 
between A and B is defined as follows : 

 2 2

1 1
( , ) ( )

m n

ij ij
i j

d A B A B
= =

= −∑∑  (4)

The Laplacian is a key entity for describing pairwise 
relationships between data elements. This is a symmetric 
positive-semidefinite matrix, characterized by having zero 
row and column sums. 

Lemma 1. Let L be an nxn  Laplacian, and let 
mxnB∈ . Then we have the following equation : 
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Proof. Let 1 2[ ... ]T n
nz z z z= ∈  then we have 
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By applying (5) we have  
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Proof is done.  



Lemma 2 . We define a NxN  unit Laplacian, denoted 
by uL , as 1u

ijL Nδ= − , with ijδ  is the Kronecker delta 

(defined as 1 for i j=  and as 0 otherwise), and 
nxNA∈ with zero mean column (i.e. sum of all column 

vectors is a zero vector). We have 

( )u T T T
N T TAL A A NI U A NS AUA NS= − = − = (8)

  with NI  is identity matrix and U  is a matrix of all ones. 
The last equality is due to the fact that the coordinates are 
centered. Proof is clear. 

Let define iA  as follows : 

1[(( ) ( ) )... (( ) ( ) )] kxN
i ci X ci N ci X ciA X Xµ µ= − − ∈ , 

and  iB  be a matrix which is formed by all the column thi  

of each matrix iY  

 1[( ) ... ( ) ] mxN
i ci N ciB Y Y= ∈  (9)

The image scatter matrix  TG  could be re-written as 
follow :  
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Now, we show that 2DPCA also finds the projection 
that maximizes the sum of all squared pair-wise distances 
between the projected data . 

Theorem 2 . 2DPCA computes the m-dimensional 
project that maximizes 

 2( , )i j
i j

d Y Y
<
∑  (11)

Proof. By Lemma 1, we get 
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Proof is done. 
Formulating 2DPCA as in (11) implies a 

straightforward generalization—simply replace the unit 

Laplacian with a general one in the target function. In the 
notation of Theorem 2, this means that the m-dimensional 
projection will maximize a weighted sum of squared 
distances, instead of an unweighted sum. Hence, it would be 
natural to call such a projection method by the name 2D 
Weighted PCA (2DWPCA). 

Let us formalize this idea. Let be , 1{ }N
ij i jwt = symmetric 

nonnegative pair-wise weights, with measuring how 
important it is for us to place the data elements i and j 
further apart in the low dimensional space. By convention, 

0ijwt =  for i j= . For this reason, these weights will be 
called dissimilarities in the context of weighted PCA. 
Normally, they are either supplied from an external source, 
or calculated from the data coordinates, in order to reflect 
any desired relationships between the data elements.  

Let define NxN  Laplacian 
ij

w i j
ij

ij

wt i j
L
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≠

⎧ =⎪= ⎨
⎪− ≠⎩

∑
 

and 
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Proposition 2 . The m-dimensional project that 
maximizes 

 2( , )ij i j
i j

w d Y Y
<
∑  (13)

is obtained by taking the direction vectors to be the m 

highest eigenvectors of the matrix 
1

s
w T

i i
i

A L A
=
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Proof. By Lemma 1 and 2, we get 
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Proof is done. The 2DWPCA seeks for the m-
dimensional projection that maximizes 2( , )ij i j

i j
wt d Y Y

<
∑ . 

And this is obtained by taking the m highest eigenvectors of 

the matrix 
1

s
w T

i i
i

A L A
=
∑ . 

IV. EXPERIMENTAL RESULTS 

This section evaluates the performance of our propoped 
algorithm 2DWPCA compared with that of the 2DPCA 
algorithm based on using ORL and Yale face databases. In 
the ORL database, there are ten different images of each of 
40 distinct subjects. For some subjects, the images were 
taken at different times, varying the lighting, facial 
expressions (open / closed eyes, smiling / not smiling) and 
facial details (glasses / no glasses). All the images were 



taken against a dark homogeneous background with the 
subjects in an upright, frontal position (with tolerance for 
some side movement). The Yale face Database contains 165 

grayscale images in GIF format of 15 individuals. There are 
11 images per subject, one per different facial expression or 
configuration: center-light, w/glasses, happy, left-light,  

TABLE I 
The recognition rates with 2DPCA and 2DWPCA on ORL database 

d 2 4 6 8 10 
k 2DPCA 2DWPCA 2DPCA 2DWPCA 2DPCA 2DWPCA 2DPCA 2DWPCA 2DPCA 2DWPCA 

2 41.56 43.95 59.33 63.37 67.48 70.18 71.93 74.44 77.11 79.14 
3 43.5 46.17 75.17 78.89 79.33 81.62 82.67 85.47 87.67 91.49 
4 44.1 54.2 72.67 74.11 84.1 88.13 89.81 91.72 91.71 95.06 
5 58.22 60.3 73.78 76.01 84.89 85.55 88.22 89.92 89.33 92.77 

TABLE II 
The recognition rates with 2DPCA and 2DWPCA on Yale database 

d 2 4 6 8 10 
k 2DPCA 2DWPCA 2DPCA 2DWPCA 2DPCA 2DWPCA 2DPCA 2DWPCA 2DPCA 2DWPCA 

2 44.69 49.24 66.56 67.11 74.69 76.22 83.13 86.35 83.49 87.05 
3 45.36 49.84 71.79 73.49 75 77.75 83.21 87.09 85.36 87.72 
4 43.75 46.62 68.75 72.86 83.33 87.35 88.75 90.76 91.25 94.03 
5 42 46.33 73 77.57 84.5 89.57 90.5 93.97 94 96.39 
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Fig. 1. The recognition rate (%) graphs which compare 2DPCA & 2DWPCA based on ORL and Yale databases

with/without glasses, normal, right-light, sad, sleepy, 
surprised, and wink. 

In our experiments, we tested the recognition rates with 
different number of training samples. ( 2,3, 4,5)k k =  
images of each subject are randomly selected from the 
database for training and the remaining  images of each 
subject for testing. For each value of k , 30 runs are 
performed with different random partition between training 
set and testing set. And for each k training sample 
experiment, we tested the recognition rates with different 
number of dimensions , d , which are from 2 to 10. 

Table I&II shows the average recognition rates (%) 
with ORL and Yale database. In Fig. 1, we plot the graphs 

to make us see the recognition results of those methods 
intuitively. Two upper graphs are performed on ORL 
database, while the two lower ones are evaluated with Yale 
database. In recognition rate vs. training samples test, we 
choose the dimension d=10, and in recognition rate vs. 
dimension test, we choose the training sample k=4. We can 
see that our method achieves the better recognition rate 
compared to the 2DPCA. 

V. CONCLUSIONS 

A new 2DPCA-based method for face recognition has 
been proposed in this paper. The proposed 2DPCA-based 
method can outperform the 2DPCA method. Both PCA and 



2DPCA may fail to emphasize the discrimination between 
the clusters, no matter how easy the task is, as they are 
unsupervised techniques. The directions that maximize the 
scatter of the data might not be as adequate to discriminate 
between clusters. So we proposed new 2DPCA-based 
schemes which can straightforwardly take into consideration 
data labeling, and makes the performance of recognition 
system better. The effectiveness of the proposed approach 
can be seen through our experiments based on ORL and 
Yale face databases. This approach can improve the 
performance of 2DPCA approach whose complexity is 
much less than PCA, LDA, or ICA approaches. 
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