
LogMap-P: On matching ontologies in parallel

Muhammad Sadiq
Ubiquitous Computing Lab, Kyung

Hee University
Yongin-si, Gyeonggi-do, South Korea

sadiq@oslab.khu.ac.kr

Muhammad Bilal Amin
Ubiquitous Computing Lab, Kyung

Hee University
Yongin-si, Gyeonggi-do, South Korea

m.b.amin@ieee.org

Hafiz Syed Muhammad Bilal
Ubiquitous Computing Lab, Kyung

Hee University
Yongin-si, Gyeonggi-do, South Korea

bilalrizvi@oslab.khu.ac.kr

Musarrat Hussain
Ubiquitous Computing Lab, Kyung

Hee University
Yongin-si, Gyeonggi-do, South Korea
musarrat.hussain@oslab.khu.ac.kr

Anees Ul Hassan
Ubiquitous Computing Lab, Kyung

Hee University
Yongin-si, Gyeonggi-do, South Korea

anees@oslab.khu.ac.kr

Sungyoung Lee
Ubiquitous Computing Lab, Kyung

Hee University
Yongin-si, Gyeonggi-do, South Korea

sylee@oslab.khu.ac.kr

ABSTRACT
An enormous amount of research have been published related to
ontology matching. The core motivation behind these researches
aim to develop matching techniques that result in highly accurate
ontology matching systems. However the performance (in terms
of execution time) of these matching techniques is predominantly
unexplored and is equally important. Among the well established
research implementations, LogMap an open source system, is con-
sidered as state-of-the-art in ontology matching due to its accuracy.
This paper presents LogMap-P, an enhanced version of LogMap
with motivation to boost performance while preserving the accu-
racy of the matching techniques.

CCS CONCEPTS
• Information systems→Entity resolution; •Computingmethod-
ologies → Parallel algorithms; Concurrent computing method-
ologies;

KEYWORDS
Ontology matching, Semantic web, Parallel matching

ACM Reference Format:
Muhammad Sadiq, Muhammad Bilal Amin, Hafiz Syed Muhammad Bilal,
Musarrat Hussain, Anees Ul Hassan, and Sungyoung Lee. 2018. LogMap-P:
On matching ontologies in parallel. In IMCOM ’18: The 12th International
Conference on Ubiquitous Information Management and Communication,
January 5–7, 2018, Langkawi, Malaysia. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3164541.3164589

1 INTRODUCTION
The excess of available knowledge over the ubiquitous platforms
have resulted in semantic heterogeneity issues [2]. The resolution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IMCOM ’18, January 5–7, 2018, Langkawi, Malaysia
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6385-3/18/01. . . $15.00
https://doi.org/10.1145/3164541.3164589

for this issue is ontology matching which derives alignment be-
tween semantically related ontologies representing knowledge re-
sources [3]. However, ontology matching is a two-fold problem
where challenges exist in two primary categories: (i) accuracy,
which measures the effectiveness of the matching process; and
(ii) performance, in terms of execution time taken by the matching
process [8]. Although, substantial amount of effort has been placed
by the semantic web researchers on the accuracy of the ontology
matching systems, but, performance is still a challenge that has
largely been unaddressed. Performance wise, ontology matching is
a computationally intensive task with quadratic computational com-
plexity [4]. It has been reported by researchers [2][1], that whole
matching process to generate alignment on large-scale ontologies
have taken from hours to days depending upon the complexity
of the matching algorithms. Due to the excess of available knowl-
edge in current years, ontologies have grown larger with increased
amount of complexity. Traditionally, ontology matching has been
an offline process; therefore, matching time was not considered
as a challenge even with larger and complex ontologies; however,
requirements of current dynamic knowledge base systems require
in-time resolution. Thus, performance aspects of ontology match-
ing needs to be addressed with scalability and resource utilization
in perspective [1].

Ontology matching systems developed over the years have taken
the execution time of the matching process in consideration and de-
vice possible resolutions; however, their implementations are accu-
racy bound, i.e., complexity of the matching algorithms. Authors of
[2], have termed these implementations as effectiveness-dependent
implementations where trade-off between accuracy (F-measure,
precision, and recall) and execution time (performance) exists. For
effectiveness-independent implementations there are only few at-
tempts. For example, ontology matching system GOMMA [7] im-
plements partial parallelism over its matchers to improve overall
performance. On the other hand SPHeRe [1][6] takes a end to end
parallelism approach that exploits the multicore and multinode
platforms for ontology matching making it extremely effective
for large scale ontology matching. However, reviewing the last
five years of Ontology Alignment and Evaluation Initiative (OAEI)1
evaluation, both of these promising systems failed to participate reg-
ularly, which indicates a gap in the expected evolution of ontology
1http://oaei.ontologymatching.org

https://doi.org/10.1145/3164541.3164589
https://doi.org/10.1145/3164541.3164589

IMCOM ’18, January 5–7, 2018, Langkawi, Malaysia S. Muhammad et al.

Figure 1: Logmap-p parallel execution flow diagram.

matching from the perspective of effectiveness-independent perfor-
mance gain. Furthermore, among the OAEI Participants, LogMap
is one such system that has been consistently participating in
evaluation and is considered as a benchmark/state-of-the-art in
ontology matching. Although LogMap is highly effective but is
effectiveness-dependent performance wise. Being available as open
source2, LogMap brings an opportunity for other researchers to
study its implementation and provide possible performance mea-
sures without losing its effectiveness. Considering this possibility
as an opening, we present LogMap-P as our performance enhanced
implementation of LogMap.

This paper is structured as follows: Section 2 describes themethod-
ology adopted for the implementation of LogMap-P. Section 3 pro-
vides details on the evaluation of LogMap-P in contrast with original
implementation of LogMap. Section 4 concludes this paper.

2 PROPOSED METHODOLOGY
LogMap[5] is a scalable and domain independent state-of-the-art
ontology matching system which is developed to draw alignments
between small and large-scale ontologies. It has three implementa-
tions, i.e.,LogMapLT (a lite version for lexical matching), LogMap-
Full(a version for large-scale ontologies), and LogMapBK (a version
for matching the ontologies that require background knowledge).
For its lite verions, it uses inverted lexical and structural indexing
for its matching process. In lexical indexing an inverted index is

2https://sourceforge.net/projects/logmap-matcher/

constructed by splitting each class label into components and com-
puting its lexical variation. While structural indexing uses interval
labeling schema to efficiently access hierarchical information from
ontologies. Although its highly accurate; however, lacks perfor-
mance enhancements. Upon detail code review, we have been able
to establish numerous execution points that can be efficiently par-
allelize for performance reasons without effecting the overall accu-
racy of the system. This section of the paper provides details of our
methodology concerning the performance efficency enhancment
of LogMap; resulting in an upgraded version we call LogMap-P.

Table 1: Terminologies And Notations

Notation Description
OS , OT Source and Target ontology respectively
Oi For simplicity Oi represents both OS , OT
Oindices
i Represents OS ,OT Inverted lexical indices

OOW LClasses
i Represents OWLClasses of OS ,OT

O
Over lappinд
i

Represents Overlapping of OS ,OT
GS Gold standard file

OC
i , O

O
i , OD

i
Represents set of class, Object and data prop-
erty labels respectively for OS ,OT

→ Mapping symbol
← Assignment operator

LogMap-P: On matching ontologies in parallel IMCOM ’18, January 5–7, 2018, Langkawi, Malaysia

2.1 LogMap-P Execution Flow
LogMap-P performs indexing, mapping, and generates overlapping
of ontologies in parallel. An extended version of LogMap[5], which
focuses on parallelism is depicted (Figure 1). To support flexible and
effective parallelization we decompose LogMap architecture into
four major parts: (1) Parallel Loading, (2) Parallel lexical indexing,
(3) Parallel Mappings, and (4) Parallel overlapping (Figure 1).

Parallel Loading deals with loading of OS ,OT ontologies. These
ontologies are independent of each Other, therefor can be safely
loaded in parallel. As a consequences, there is a great time reduction
in loading parallel ontologies.

In Parallel Lexical Indexing lexical indices for class, object and
data property labels are generated forOS ,OT in parallel. The lexical
indexing process consists of two major parts Oindices

S , Oindices
T

and each of them is further decomposed into OC
i , O

O
i and OD

i
respectively as shown in (Figure 1). Conventionally, LogMap creates
lexical indices for OC

i , O
O
i and OD

i separately, because in mapping
phase, it maps OC

S → OC
T , O

O
S → OO

T , and OD
S → OD

T . Therefor,
lexical indexing time is reduced incredibly by parallelizing OS , OT
in two separate parallel processes. Further, each parallel process
creates OC

i , O
O
i and OD

i of OS , OT independently in parallel.
Parallel Mappings: In existing LogMap, to extract equivalent

classes, eachOC
S ,O

O
S ,OD

S are mapped withOC
T ,OO

T andOD
T respec-

tively. In extended LogMap-P, the mapping phase consists of three
independent parallel processes e.g. p1(OC

S , O
C
T), p2(O

O
S , OO

T), and
p3(OD

S , OD
T) where each p1, p2, and p3 represents an independent

process. These concurrent processes add computed mappings to a
data structure that supports concurrent operations. Once mappings
are generated, then an alignment of OS , and OT is computed in
parallel. The alteration of mapping phase into parallel processes
resulted in a significant improvement in execution time.

Parallel Overlapping: LogMap-P extractsOindices
S , andOindices

T
in parallel and then intersects them to compute overlapping indices
e.g. Commonindices = Oindices

S ∩Oindices
T . Then, the OWLClass

for each of Commonindices is extracted from OS , OT in parallel.
Finally Oover lappinд

S , and Oover lappinд
T ontologies are created.

The whole process, goes in parallel as shown in (Figure 1) which
remarkably improves the performance of LogMap-P in terms of
execution time as compared to LogMap.

2.2 LogMap-P Algorithm
LogMap-P algorithmmatch ontologies in parallel. It requiresOS ,OT
and GoldStandard file as an input. As a result, it generate mappings
for OS ,OT (see Algorithm 1).

To efficiently utilize the available processors and avoid load-
imbalance which is mostly caused by non-uniform data distribu-
tion among the available cores. The algorithm maintains a balance
among the cores in-hand and the number of parallel threads. It
creates an executor service which is an asynchronous execution
mechanism that has the ability to execute multiple tasks in parallel
(see line 1, 2). The algorithm loads OS ,OT , and GoldStandard by
using executor. To computemappings ofOS ,OT algorithm defines a
procedure (see algorithm 2) which takes OS ,OT as an input and re-
turns the desiredmappings ofOS ,OT . The algorithm computes pre-
cision, recall, and f-measure of the mappings w.r.t GoldStandardFile.

Algorithm 1: LogMap-P LogMap Performance
Input :OS File,OT File,GoldStandardFile
Output :AliдnmentFileRDF ,Overlappinд

1 CPUs ← Runtime .дetAvailableProcessors();
2 pExec ← Executor .createFixedThreadPool(CPUs);
3 OS ← pExec .load(OS File);
4 OT ← pExec .load(OT File);
5 GoldStandard ← pExec .load(GoldStandardFile);
6 # see procedure 2;
7 Mappinдs ← дenerateMappinдs(OS ,OT ,pExec);
8 Precision ← computePrecision(Mappinдs,GoldStandard);
9 Recall ← computeRecall(Mappinдs,GoldStandard);

10 # see procedure 3;
11 OSOTOverlappinд← Overlappinдs(OS ,OT ,pExec);
12 AliдnmentRDF ← дenerateAliдnment(Mappinдs);

Finally the algorithm generates Overlapping ontologies of OS ,OT
by using overlapping procedure (see algorithm 3).

Algorithm 2: Parallel Mappings Procedure
Input :OS ,OT ,pExec
Output :Mappinдs

1 concurrentStruct ← newConcurrentStruct();
2 OS InvertedIndex ← newHashMap();
3 OT InvertedIndex ← newHashMap();
4 LabelSet ← [Classlabel ,Object label ,Datalabel];
5 for label ← in LabelSet do
6 OS InvertedIndex .add(pExec .дenerateInvertedIndices(OS , label));

7 OT InvertedIndex .add(pExec .дenerateInvertedIndices(OT , label));

8 for label ← in LabelSet do
9 OSLabelIndx ← OS InvertedIndex .дetIndexO f (label);

10 OT LabelIndx ← OT InvertedIndex .дetIndexO f (label);
11 concurrentStruct .add(

pExec .computeMappinдsFor (label ,OSLabelIndx ,OT LabelIndx)
);

12 Mappinдs ← concurrentStruct .дetAllMappinдs();

Mapping Procedure: Mapping is a computation intensive work
which requires pairwise mappings. Therefor we proposed an effi-
cient parallel version as shown in algorithm 2. It requires OS ,OT
ontologies as an input. At first, inverted indices of class, object and
data property labels are created forOS andOT in parallel line 5 to 7.
After that, set of pairs of class, object and data property mappings
of OS , OT are generated and added to a data structure that sup-
port concurrent operations line 8 to 11. Finally all sets of pairs of
mappings are fetched from concurrent data structure.

Overlapping Procedure: The overlapping algorithm consists of hi-
erarchical steps and the computational complexity of the algorithm
approaches to quadratic. In order to minimize execution time we

IMCOM ’18, January 5–7, 2018, Langkawi, Malaysia S. Muhammad et al.

Figure 2: Time comparison between logmap and logmap-p.

parallelized overlapping algorithm without increasing its computa-
tional complexity (see algorithm 3). To obtain it, new data structures
have been introduced that support concurrent operations (see line
2, 3). Futher, we compute common-indices in OS , OT (line 4). In the
first iteration of the loop (line 5 to 13) set of weak inverted indices
of Class labels are created for OS and OT and then concurrently
added. These indices are associated with each index where index
∈ common-indices. Similarly inverted indices of Object and Data
property labels are created subsequently in the second and third
iteration of the loop. Finally overlapped ontologies for OS , OT are
computed in line 14, 15 respectively.

3 EVALUATION
We performed extensive evaluation of the proposed LogMap-P al-
gorithm against LogMap on multiple benchmark datasets. We have
taken FMA, NCI and SNOMED ontologies with 73920, 64880, and
306160 classes respectively from Ontology Alignment Evaluation
Initiative (OAEI) datasets. For experiment we combined ontologies
into three different pairs e.g. FMA-NCI, FMA-SNOMED, SNOMED-
NCI. We have evaluated the matching algorithm by drawing the
comparison among these ontologies. The efficiency of proposed
algorithm is shown in Figure 2. We have conducted the experiment
for each pair in multiple of 100 and then draw the average time
of mapping taken by LogMap and LogMap-P for each pair. All the
experiments are conducted on a system with memory 16GB, Intel
Core i7 with 4 physical cores of 3.60GHz processing speed. Our pro-
posed algorithm LogMap-P performed around 38 % efficient than
LogMap algorithm in-term of execution time as shown in Figure 2.
The proposed algorithm concerned only the efficiency in terms of
execution time through parallelizing the matching components so
there is no degradation of matching accuracy of ontologies. Hence,
our algorithm preserved the same accuracy as that of LogMap
algorithm.

Algorithm 3: Parallel Overlapping Procedure
Input :OS ,OT ,pExec
Output :Overlapping Ontologies for OS ,OT

1 LabelSet ← [Classlabel ,Object label ,Datalabel];
2 OS_overlappings← newConcurrentHashSet();
3 OT _overlappings← newConcurrentHashSet();
4 Intersection ←

OS .weakInvertedInices ∩OT .weakInvertedInices
5 for labelSet ← in Intersection do
6 pExec .submit(

forwii ← in OS .weakInvertedIndices .дet(labelSet)
do

7 concurrentUpdate(OS_overlappings, wii);
8);
9 pExec .submit(

forwii ← in OT .weakInvertedIndices .дet(labelSet)
do

10 concurrentUpdate(OT _overlappings, wii);
11);
12 OS_overlapping←

generateOverlappingOntology(OS_overlappings);
13 OT _overlapping←

generateOverlappingOntology(OT _overlappings);

4 CONCLUSIONS
Our proposed LogMap-P algorithm is an extended version of open
source LogMap algorithm which has enhanced the efficiency by
38 %, while preserving the same accuracy level. LogMap-P code is
available as an open-source at Bitbucket (https://bitbucket.org/bit-
whacker/logmap-p) for research enhancement and development.
For evaluation purposes we have selected the well known data set
from OAEI. In future we want to extend our work to parallelize the
LogMapFull algorithm.

ACKNOWLEDGMENTS
This work was supported by the Korea Research Fellowship Pro-
gram through the National Research Foundation of Korea (NRF)
funded by theMinistry of Science and ICT (NRF-2016H1D3A1938039).
This work was also supported by the Industrial Core Technology
Development Program (10049079 , Develop of mining core technol-
ogy exploiting personal big data) funded by the Ministry of Trade,
Industry and Energy (MOTIE, Korea)

REFERENCES
[1] Muhammad Bilal Amin, Rabia Batool, Wajahat Ali Khan, Sungyoung Lee, and

Eui-Nam Huh. 2014. SPHeRe. The Journal of Supercomputing 68, 1 (01 Apr 2014),
274–301. https://doi.org/10.1007/s11227-013-1037-1

[2] Muhammad Bilal Amin, Wajahat Ali Khan, Sungyoung Lee, and Byeong Ho Kang.
2015. Performance-based ontology matching. Applied Intelligence 43, 2 (01 Sep
2015), 356–385. https://doi.org/10.1007/s10489-015-0648-z

[3] Jrme Euzenat and Pavel Shvaiko. 2013. Ontology Matching (2nd ed.). Springer
Publishing Company, Incorporated.

[4] Anika Gross, Michael Hartung, Toralf Kirsten, and Erhard Rahm. 2010. On
Matching Large Life Science Ontologies in Parallel. Springer Berlin Heidelberg,
Berlin, Heidelberg, 35–49. https://doi.org/10.1007/978-3-642-15120-0_4

[5] Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. 2011. Logmap: Logic-based and
scalable ontology matching. In International Semantic Web Conference. Springer,

https://doi.org/10.1007/s11227-013-1037-1
https://doi.org/10.1007/s10489-015-0648-z
https://doi.org/10.1007/978-3-642-15120-0_4

LogMap-P: On matching ontologies in parallel IMCOM ’18, January 5–7, 2018, Langkawi, Malaysia

273–288.
[6] Wajahat Ali Khan, Muhammad Bilal Amin, Asad Masood Khattak, Maqbool

Hussain, and Sungyoung Lee. 2013. System for Parallel Heterogeneity Resolution
(SPHeRe) Results for OAEI 2013. In Proceedings of the 8th International Conference
on Ontology Matching - Volume 1111 (OM’13). CEUR-WS.org, Aachen, Germany,
Germany, 184–189. http://dl.acm.org/citation.cfm?id=2874493.2874511

[7] Toralf Kirsten, Anika Gross, Michael Hartung, and Erhard Rahm. 2011. GOMMA:
a component-based infrastructure for managing and analyzing life science on-
tologies and their evolution. Journal of Biomedical Semantics 2, 1 (13 Sep 2011), 6.

https://doi.org/10.1186/2041-1480-2-6
[8] P. Shvaiko and J. Euzenat. 2013. Ontology Matching: State of the Art and Future

Challenges. IEEE Transactions on Knowledge and Data Engineering 25, 1 (Jan
2013), 158–176. https://doi.org/10.1109/TKDE.2011.253

http://dl.acm.org/citation.cfm?id=2874493.2874511
https://doi.org/10.1186/2041-1480-2-6
https://doi.org/10.1109/TKDE.2011.253

	Abstract
	1 Introduction
	2 Proposed Methodology
	2.1 LogMap-P Execution Flow
	2.2 LogMap-P Algorithm

	3 Evaluation
	4 Conclusions
	Acknowledgments
	References

