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ABSTRACT
Due to the budget and the environmental issues, achieving energy
efficiency gradually receives a lot of attentions these days. In our
previous research, a prediction technique has been developed to
improve the monitoring statistics. In this research, by adopting
the predictive monitoring information, our new proposal can per-
form the optimization to solve the energy issue of cloud computing.
Actually, the optimization technique, which is convex optimiza-
tion, is coupled with the proposed prediction method to produce a
near-optimal set of hosting physical machines. After that, a corre-
sponding migrating instruction can be created eventually. Based on
this instruction, the cloud orchestrator can suitably relocate virtual
machines to a designed subset of infrastructure. Subsequently, the
idle physical servers can be turned off in an appropriate manner to
save the power as well as maintain the system performance. For
the purpose of evaluation, an experiment is conducted based on
29-day period of Google traces. By utilizing this evaluation, the
proposed approach shows the potential to significantly reduce the
power consumption without affecting the quality of services.

CCS CONCEPTS
• Computing methodologies → Supervised learning by re-
gression; • Computer systems organization → Cloud com-
puting; • Mathematics of computing→ Stochastic processes;
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1 INTRODUCTION
In recent years, a number of data center recognized cloud com-
puting as a popular platform to manage most of the operations.
Naturally, cloud computing improves utilization and scalability of
underlying physical infrastructure. As a substitution for indepen-
dently allocating the computing facilities when being requested,
cloud computing is able to deliver the ordered resource as a virtual
package conveniently via internet connection. Besides, it is worth
noting that cloud computing can be used to enhance the utilization
of the infrastructure by virtualizing the service composition in a
higher level. Hence, the capacity of the physical facilities can be
unified to provide better quality of services. Finally, implementing
cloud computing can lessen the management cost to consequently
save the money.

In order to achieve the reduction of power consumption in cloud
computing, it would be a must to understand the sources that con-
sume the energy and how to efficiently reduce the corresponding
consumption. Obviously, when a computing system is online, most
of the internal components burn the power to do the assigned jobs.
Because of this reason, any inefficiently running devices, which are
in the idle state, actually waste the power for very limited value.
Critically, this kind of facilities should be minimized to save the
energy. Regularly, the conventional approach is to decline the num-
ber of working physical machines to an optimal quantity. By using
the virtualization, cloud computing has a chance to implement
this approach through stacking the virtual machines (VMs). In or-
der to do that, the VMs can be migrated to an optimal designated
physical machines (PMs). Subsequently, the remaining idle PMs
are turned off to fulfill the requirement of mitigating the power
burning. In the recent research, we have developed an enhanced
prediction technique based on Gaussian process regression to im-
prove the monitoring statistics. In this research, we would like to
propose an optimization scheme to reduce the power consumption
in cloud computing. The remaining parts of the paper are organized
as follows. In section 2, we included some related works of energy
efficiency in cloud computing area. Section 3 shows the description
of our proposed architecture. In this section, the summary of our
preceding research, including the prediction, is also briefly intro-
duced. Section 4 includes the proposal of optimization technique
to do the energy optimization. Section 5 presents how we conduct
the performance evaluation to show the usefulness of the solution.
In the end, section 6 attaches the conclusion of paper and outlines
our future work.
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2 RELATEDWORKS
Energy efficiency in cloud computing is mostly related to VM con-
solidation philosophy. It means that the problem of interest focuses
on choosing the suitable placement for VMs with regards to the
utilization of PMs [3]. Basically, we can model the VMs and PMs
as a regular object-bin problem. Hence, the VM consolidation can
be simplified to bin-packing problem, which is NP-hard [1]. Conse-
quently, the heuristics-oriented techniques might be the promising
solutions. Whereby, some well-known approaches popularly adopt
this methodology, namely best fit decreasing [1] and first fit decreas-
ing [5]. By engaging these techniques, the cloud orchestrator has a
tendency to assign VMs to minimize the number of hosting PMs.
Due to this attractive feature, the mentioned bin-packing model
is widely used to generate the solution to deal with the energy
efficiency. However, heuristics approaches have a critical drawback
when implementing in action. In order to produce good solution,
this family requires the fixed number of objects and bins at the
beginning of time. In other words, the quantity of VMs and PMs
must be recognized in advance. Apparently, this requirement is
unfeasible since it breaks the principles that make cloud comput-
ing, which are the elasticity and the multi-tenancy. In addition, the
rapid changes in infrastructure’s utilization clearly degrade bin-
packing approaches in term of accuracy. Because of that, this issue
eventually casts bad effects on system performance.

In order to breakthrough thementioned obstacle, other approaches
utilize the prediction techniques as a preprocessing step to enhance
the input data. By predicting the infrastructure’s workload, the
cloud orchestrator can produce more reasonable decision to lessen
only unexpected effect of utilization fluctuation. There would be a
number of research take into account this method to their proposals.
The candidates for prediction algorithms are various from hidden
Markov model [8] to polynomial fitting [16]. Unfortunately, these
authors do not pay enough attention to the designed philosophy of
versatile resource provision in cloud computing. Therefore, these
techniques, might not provide good prospect of underlying system
to the orchestrator. Besides, there is another research trying to uti-
lize the Wiener filter [7] to predict the workload. However, to the
best of our knowledge, Wiener filter performs properly only with
the stationary signal and noise spectrum. Bringing signal process-
ing technique to the cloud computing domain without a rigorous
analysis might not be a good idea. Due to this reason, Wiener fil-
ter might be inapplicable for prediction purpose in the domain of
interest.

Furthermore, one different kind of approaches that should be in-
cluded is the modified specific schedulers in [6], [14] and [2]. These
schedulers are the efforts to solve other aspects of energy efficiency
in network traffic, resource reconfiguration and communication
rates. By proposing these schedulers, the authors claim that they can
optimize the network throughput as well as balance the resource
utilization, eventually save the energy. However, these research do
not consider the importance of system performance preservation.
Therefore, the referred schedulers are unable to implemented in
service providing systems.

By investigating the research area, a conclusion can be made
that even though the energy efficiency is a hot topic in computer
engineering these days, not enough research has comprehensively

been successful in equating the energy savings with an acceptable
performance, especially in a predictive and optimized manner. Be-
cause of that, we would like to propose a solution which engages
our previous prediction method [4] and convex optimization tech-
nique to reduce the energy consumption in cloud computing. The
rest of the proposal is described in the next sections.

3 PROPOSED ARCHITECTURE
3.1 System description
Assume that the infrastructure of interest is homogeneous system.
That means all the physical computing facilities are identical. This
assumption is only to make the equation derivatives more conve-
nient. In fact, this configuration does not degrade the generality
because the heterogeneous system can be transformed to homoge-
neous system just by adding some weighted arguments. As stated
previously, the target of the research is to reduce the power con-
sumption in cloud computing. In order to do that, we follow the
VMs stacking philosophy. In the other words, VMs consolidation is
chosen to compact the size of running PMs. This choice relies on
the fact that an idle PM actually burns an amount of power up to
60% [9][11][10] of the peak power, which is used to maintain the
same PM in peak performance. It is worth mentioning that booting
up a PM just burns 23.9% [13] of the same power. Furthermore,
reducing the number of running PMs delivers additional reduction
of the extra power for maintaining the cooling system as well as
the networking devices. Due to these reasons, stopping idle PMs
can help to save more power than leaving them serving no specific
purpose, even an extra expense is needed to re-activate the offline
computing facilities subsequently. Relying on this reasoning, we
design an architecture, namely the energy efficiency management
(E2M) system shown in Figure 1. The main target of this architec-
ture is to optimally create VMs consolidation strategy and send
it to the orchestrator periodically. Finally, the idle PMs are tem-
porarily deactivated to reduce power consumption. Following is
the functionality of each component in the architecture:

• Ganglia: this component collects most of operation statistics
for both PMs and VMs. The collected information is actually
used as the input for the prediction step in the next stage.
Note that Ganglia is known to be trusted platform for years
for monitoring purposes. This component is light-weight but
powerful and versatile enough to integrate to any solution.

• Predictor: this component is the data sink for Ganglia’s statis-
tics. After receiving the aforementioned data, the enhanced
Gaussian process regression is activated to do the prediction
step. The output of this step is the predictive monitoring
statistics. In other words, the predictor provides the futuris-
tic perspective of the working status of infrastructure. This
kind of anticipated system utilization is more valuable for
the optimization step than the original data.

• Energy optimizer: the predictive monitoring statistics, that
are retrieved from the predictor, can be engaged as the pre-
cious input for creating near-optimal consolidating instruc-
tion. The strategy, if possible, has to save as much power as
possible without deteriorating the quality of services. In fact,
the responsibility of this component is to decide the mini-
mum but feasible set of PMs to normally host the increasing
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Figure 1: Architecture of energy efficiency management (E2M) system.

VMs. Finally, the complete package of VM consolidation is
delivered to the cloud orchestrator for implementation.

3.2 Prediction model
As mentioned above, the migrating instruction would be created in
the energy optimizer component. Before the optimization procedure
can be issued, it is mandatory to enhance the monitoring data in
advance. The reason for the need of this enhancement is twofold.
Firstly, it is known to be true that the monitoring statistics is always
the delayed information. It means that the data we has received at
the time t actually reflects the system status at the time t − τ , in
which, τ is the monitoring window that triggers the data collecting
process. Any decision making based on this obsolete data might
not be reasonable at the time the reaction is executed. Considering
this fact, there is obviously a requirement for data prediction. The
second reason is that sometimes it is better to apply proactive
reaction rather than reactive model. In that case, there would be
higher chance for the orchestrator to reduce the violation to quality
of services in advance. Regularly, the target of the predictor is to
provide the futuristic utilization of resources to the optimizer. In
order to do that, the Bayesian learning and the Gaussian process
regression are chosen to make the regression. The guidance on how
to build this prediction model is provided in detail in our preceding
research [4].

4 ENERGY OPTIMIZATION
Coming to this step, we assume that the energy optimizer receives
enough information from the predictor, it is right time to conduct
the optimization for power consumption. As said previously, a
minimum-but-feasible number of PMs is required as the output
of this stage. Note that the output is subsequently used to con-
struct the instruction for VM migration. Primarily, there are two
sub-components in the energy optimizer, namely power manage-
ment and cluster optimizer. The power management observes the

resource pool and incorporates the energy decision that has been
made from the cluster optimizer. The final decision can be referred
to as the instruction for VM migration. This instruction is sent to
the cloud orchestrator to actuate.

4.1 Performance modeling
Among utilization informations, since CPU is one of the most sen-
sitive parameters, this factor should be chosen to model the perfor-
mance. Denote the global utilization asU fi

m ∈ R+ and the individual
utilization as I fim ∈ R+ regarding the resource fi (For instance, fc
stands for CPU). The number of active PMs, which is denoted by
am at the monitoring windowm, are the target to calculate. It is
crucial to mention that consolidating the VMs into a number am of
PMs might result the infratructure to its peak performance. Hence,
this procedure needs to be controlled. Otherwise, the whole sys-
tem might suffer very high latency [15] and violate the quality of
services, which is described in the service level agreement (SLA)
document. Therefore, the utilization of CPU resource should be
formulated as follows:

Im = max
fc

{I
fc
m } = max

fc
{

U
fc
m

amCfc
}. (1)

Observing (1), Im is known to be a decreasing function of am . In
other words, decreasing the number of PMs might cast high latency
to entire system. Denote the average latency of task processing
in CPUs as lm . This parameter can be computed by engaging the
expectation waiting time E(fc ) of the exhausted CPU:

lm (Im ) = E(fc ) =
λm 1/µ 2

2(1 − λm 1/µ)
, (2)

in which, λm is the arrival rate of the tasks, µ is the service rate
of homogeneous CPU. By comparing lm to the threshold l (which
is depicted in the SLA document), the quality of services can be
estimated to be violated or not. If the violation occurs, the penalty
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cost Cpm needs to be calculated as follows:

C
p
m = wmsp (lm (Im ) − l)+, (3)

in which, wm and sp stand for the weight factor that reflects the
magnitude of violation, and the fine that needs to be paid for the
penalty, respectively. The weight factor wm is also supposed to
extinguish the trend of the average latency increment. In other
words, this parameter flexibly allows a controlled number of under-
performance PMs as a preventive method for reducing system
overhead. Essentially, this weight plays the role of preserving the
SLA execution.

4.2 Energy modeling
As we all know that the power consumption in running clusters
can be broken down to two periods: the period of processing the
assigned tasks and the period of maintaining the idle state. This
fact can be modeled by using following equation:

em = Pidle + Prunninд . (4)

Assume that sm stands for the fine of electricity at monitoring
windowm, the power expense, denoted by Ce

m , is represented as
follows:

Ce
m (am ) = smamem = smam (Pidle + Prunninд). (5)

In (5), the energy, which is used for processing the tasks, is un-
touchable. As a result, the represented parameter Prunninд should
not be considered in the optimization procedure. So on, (5) is re-
duced to:

Ce
m (am ) = smamPidle . (6)

4.3 Cluster optimizer
The heart of energy optimizer is represented in this section. As a
brief recapitulation, our objective is to reduce the power consump-
tion but still preserve the quality of services. This objective can
be achieved via minimizing the number am of active PMs. Mathe-
matically, the variable a∗m needs to be found optimally. Firstly, we
model the problem by engaging convex optimization as follows:

min
0≤am ≤Pm

(wmsp (lm (Izm ) − l)+ + smamPidle ). (7)

As stated before, the function lm (Im ) is a decreasing function of
am . Therefore, the condition of a∗m can be depicted as below:

a∗m ≤
δm

l−1m (l)
. (8)

In case a∗m ≥ δm/l−1m (l ) and (lm (Izm ) − l) = (lm (δm/am) − l)+ = 0,
then any reduction of a∗m to δm/l−1m (l ) can also reduce the burning
power. Due to this reason, (7) can be re-formulated as shown below:

min
0≤am ≤

δm
l−1m (l )

(wmsp (lm (Izm ) − l)+ + smamPidle ). (9)

The Lagrangian function of this problem can be expressed as
below:

L(am ,γ ) = wmsp (lm (
δm
am

) − l)++

smamPidle + γ (am −
δm

l−1m (l)
) + α(0 − am ).

(10)

Table 1: Summary of Google Traces’ Characteristics

Time span # of PMs #VM requests # of users

29 days 12583 >25M 925

This function can be solved by applying Karush−Kuhn−Tucker
(KKT) conditions to find the near-optimal value a∗m .

5 PERFORMANCE EVALUATION
5.1 Experiment design
The testbed is a cluster of 16 homogeneous servers. For the detail
configuration, an Intel Xeon E7-2870 2.4Ghz and 12GB of RAM
are geared towards the purposed of hosting upto 8 VMs in each
serves. With these equipments, the infrastructure can host up to
128 VMs at maximum to conduct the experiment. For the dataset,
we use Google traces as a simulation for the workload. Announced
by Google, these traces actually comprise the monitoring data from
more than 12,500 machines over a duration of 29 days. However,
only a set of 6732 machines is chosen to satisfy the assumption of
homogeneous system. In this set, we also extract randomly 2.26
GB from 39 GB of compressed data for the experiment. The chosen
dataset consists of many parts. Each part represents a period of
24-hour of traces. For the convenience of presentation, we scale
the maximum length of measurement to 60 seconds. This length is
also adopted as the monitoring window. Moreover, the summary
of Google traces’ characteristics is described in Table 1.

5.2 Implementation
The experiment is conducted under four schemes for comparison
as follows:

• The default schemes: all of the PMs are activated all the time.
No power savings is acquired at all.

• The greedy first fit decreasing (FFD) scheme [12]: the VMs
are sorted into queue by descending order in term of internal
CPU utilization. This queue is subsequently submit to the
first host that matches the resource requirement. Basically,
the bin-packing approach is used to relocate VMs.

• The proposed approach (E2M) scheme: the proposed method
is implemented to create near-optimal energy consumption
and preserve the quality of services.

• The optimal energy-aware scheme: an optimal solution is
pre-calculated to achieve minimum energy consumption.
In this scheme, the quality of services is not taken into ac-
count. In order words, the quality of services is sacrificed to
significantly save the energy.

5.3 Results
The Google traces is actually a set of synthesized data. Therefore,
in order to measure the energy consumption, an external equiva-
lent energy calculation [13] is applied to compute the result. The
description of calculation and related parameters is depicted in
the original paper and summarized in Table 2. As shown in Fig-
ure 2 and 3, because of activating the PMs all the time, the default
scheme consumes egregious amount of power. Meanwhile, in the
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Table 2: Energy Estimation Parameters

Parameter Value Unit

Esleep 107 Watt

Eidle 300.81 Watt

Epeak 600 Watt

Eactive→sleep 1.530556 Watt-hour

Esleep→active 1.183333 Watt-hour

Eactive→off 1.544444 Watt-hour

Eoff→active 11.95 Watt-hour
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Figure 2: Percentage of active physical servers in Google
traces experiment.

FFD scheme, even the power utilization is less than the default
scheme, a remarkable amount of power is wasted since many idle
PMs are kept alive when the workload fluctuates. The reason for
this issue is that, without the capability of prediction, the FFD is
unable to appropriately perform the bin-packing algorithm in ma-
jority of times. Another reason is the obsolete status information
of underlying computing facilities. Oppositely, the proposed ap-
proach, namely E2M, can save much better energy by equipping
with the prediction on resource utilization and the optimization on
the pool of active PMs. There is also another additional aspect of
this achievement, which is the gap between E2M and the optimal
scheme. Apparently, the optimal scheme has better energy savings
regardless the system performance. Because the quality of service
is totally not considered in this scheme, this optimal solution brings
to the infrastructure too much overhead and tends to frequently
violate the SLA.

For more detail on quantitatively measuring the energy savings,
our proposal can obtain the reduction of power consumption up to
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Figure 3: Power consumption evaluation of the proposed
method in Google traces experiment (lower is better).
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Figure 4: Power consumption vs average latency in Google
traces experiment.

34.89% compared with the default scheme. The detail evaluation can
be found in Figure 4. This achievement can be taken into account as
a significant improvement. As a side note, the optimal scheme can
only achieve up to 37.08%. It means that the proposed method can
be seen as a near-optimal solution. Also in Figure 4, our method
suffers around 54.72% less than the optimal solution in term of
average latency of system scheduling. Therefore, the quality of
services can be preserved in an acceptable level.
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6 CONCLUSION
In this research, a near-optimal energy efficient solution is proposed
based on the utilization prediction of infrastructure and the power
consumption optimization. By engaging the mentioned techniques,
our proposal can create suitable VM migration strategy. Based on
this migration scheme, the cloud orchestrator can issue more rea-
sonable VMs consolidation and condense near-optimal the pool
of active PMs. As a result, a significant reduction in energy con-
sumption can be achieved while still preserving the SLA. In future,
we plan to integrate the heuristics algorithm to build a knowledge
base that might help to reduce the overhead when performing the
prediction. This integration might boost up the prediction part to
even more quickly create the VM migrating instruction.
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