
Adaptive Cache Replacement in Efficiently Querying Semantic Big Data

Usman Akhtar
Department of Computer Science & Engineering,

Kyung Hee University
Yongin-si, Gyeonggi-do, South Korea

usman@oslab.khu.ac.kr

Sungyoung Lee
Department of Computer Science & Engineering,

Kyung Hee University
Yongin-si, Gyeonggi-do, South Korea

sylee@oslab.khu.ac.kr

Abstract—This paper addresses the problem of querying
Knowledge bases (KBs) that store semantic big data. For
efficiently querying data the most important factor is the
cache replacement policy, which determines the overall query
response. As cache is limited in size, less frequently accessed
data should be removed to provide more space to hot triples
(frequently accessed). Moreover, performance bottleneck of
triplestore, makes real-world application difficult. To achieve
a closer performance similar to RDBMS, we have proposed an
Adaptive Cache Replacement (ACR) policy that predict the hot
triples from the query log. Our proposed algorithm effectively
replaces cache with high accuracy. To implement the cache
replacement policy, we have applied exponential smoothing, a
forecast method, to collect most frequently accessed triples. The
evaluation result shows that the proposed scheme outperforms
the existing cache replacement policies, such as LRU (least
recently used) and LFU (least frequently used), in terms of
higher hit rates and less time overhead.

Keywords-RDF Caching; Linked Data; Exponential Smooth-
ing; Cache Replacement;

I. INTRODUCTION

The heap of structured data published over the Inter-
net is increasing i.e., Linked Data [1]. Linked Data is a
global information space for representing and connecting
data structurally. The format of Linked Data is encoded as
RDF1 which consists of subject, predicate, and an object
and is stored in the Triplestore2. RDF is widely used as
an information model for vast semantic data. However, in
RDF data model the querying complexity is higher than the
relational data model. As the SPARQL3 is standard language
to query RDF dataset. To access the data, SPARQL service
is deployed on each knowledge base which use the HTTP
bindings. The main part of the SPARQL language is Web
Services Description Language (WSDL)4 that describe the
means for conveying queries and results to the processing
service. Currently, widely used RDF datasets such as DB-
pedia5 produces abundant request from diverse applications
[2]. Nowadays, the amount of the semantic data is growing

1https://www.w3.org/RDF/
2https://jena.apache.org/
3https://www.w3.org/TR/rdf-sparql-query/
4https://www.w3.org/TR/rdf-sparql-protocol/
5https://www.dbpedia.org/

rapidly, therefore for efficient query processing and caching
[2] is required. So caching is used to leverage the query
processing on the Triplestore and the data is present in its
cache the request is sent immediately (also called cache
hits) [3]. Many caching techniques have been developed
such as LRU [4] and LFU [5] for relational databases. The
underlying structure of the big semantic data is different
from the relational databases. In recent years, a lot of
non-relational Triplestore [6] are emerging. The caching
algorithm design for relational databases is not applicable to
Triplestore [7]. In the RDF triplestore, some of the records
are ”hot” (frequently accessed by the application) and others
are ”cold” or seldom accessed. The performance depends
on the number of factors such as hot records in the cache
or residing in the memory for fast access [8]. Our work is
motivated by the need for efficient query processing in the
Triplestore. The following considerations drive our research:

(1) Access Workload: The performance of the Triplestore
is a major challenge in real world practical application. The
workload exhibits considerable access skew, for example,
the product description in online store exhibits natural skew
as most of the items are popular and frequently accessed
than others [9]

(2) Overhead in caching: The major problem of cache
is high overhead due to the proactive fetching [10], [11].
For example, cache policy such as LRU encounters 25%
overhead on every record access [7].

In this paper, we introduce an approach to identify to
identify the hot triples and develop adaptive cache replace-
ment policy, which check the access frequency of highly
retrieved triples. We first extract the query from the accessed
log and use the exponential smoothing method to estimate
the most frequently accessed triples. Our cache replacement
evaluates the frequency of the cached queries and ignore the
less frequent access triples. For the cache replacement, we
choose exponential smoothing due to its higher accuracy and
fewer error rates as shown in Figure 1. The standard error of
smoothing is significantly less than the LRU approach and
it is precise. Poor accuracy of the items is very crucial as
miss-classified records reduce the in-memory hit rates.

The main contributions of this paper is summarized as
follows:



S
td

. E
rr

o
r 

O
f 

E
st

im
at

io
n

0

0.5

1

1.5

2

Access Frequency
0 200 400 600 800 1,000 1,200 1,400 1,600

 Exp. Smoothing
 LRU

 Exp. Smoothing
 LRU

Figure 1: Showing the standard error rates of LRU and
exponential smoothing.

1. We have developed an Adaptive Cache Replacement
(ACR) algorithm to replace the triples with frequently ac-
cessed ones for higher hit rates.

2. We have utilized exponential smoothing, a forecast
method to identify the number of frequently accessed triples.
The results show that our proposed technique outperforms
in terms of higher hit rates and less overhead.

The rest of the paper is organized as follows. We in-
troduced our proposed methodology in section II, which
briefly describes the identification of hot triples and cache
replacement policy. In section III, we have performed the
experiments on the real datasets and the results outperformed
other state-of-the-art approaches. We concluded this paper in
Section IV and discussed future research directions.

II. THE PROPOSED METHODOLOGY

A. Overview
Our proposed approach illustrated in Figure 2 consists

of the two main phases; offline and cache replacement
phase. In the offline phase, we analyze and extract the
frequently accessed triples. The query record will keep track
of accessed queries and send for offline analysis to calculate
the frequencies. If the query is not present in cache the result
is transmitted from SPARQL endpoint and stored in the
cache module. Cache module will maintain the frequently
accessed triples, when the cache becomes full it will replace
the triples.

B. Logging And Offline Analysis
Previously executed queries provide the valuable infor-

mation and reflect the user’s interest in data. Therefore,
query log analysis is a method to extract relevant data
from semantic big data cloud. We performed offline analysis
to extract the previously issued queries. We have utilized
publicly available query log provided by USEWOD2011
[12] challenge. The log6 contain several months of usage

6https://httpd.apache.org/docs/1.3/logs.html

Figure 2: Proposed model for identifying hot triple for fast
query processing

data such as DBpedia7. The format of the log consists of
IP address and timestamps. The main goal is to extract the
query from the log that was previously requested, include the
time when a query was performed. We observed that the log
contain duplicate and invalid queries. Linked Data consist of
the set of triples such as < S,P,O > where S represent the
subject, P represent the predicate and O represent the object.
Similarly, SPARQl query can be represented as:

Q = (query− type, patternP, solution−modifier) (1)

In equation1, main part of the query is P, which contain
patterns that match with the Linked Data. The solution-
modifier performs aggregation, grouping and eliminating
the duplicates. For the output of SPARQL query Q query-
type determines the option which could be SELECT, ASK,
CONSTRUCT and DESCRIBE. In the next section, we will
discuss the use of the access log in determining the hot
triples as well as the cache replacement strategy.

C. Identifying and Caching Hot Triples
The identification of hot triples using exponential smooth-

ing, a forecast method to estimate the triples access fre-
quencies. The frequencies are arranged in descending order,
which also includes the hot triples stored in cache. To update
the record, we proposed cache replacement strategy.

1) Exponential Smoothing : We have applied expo-
nential smoothing a forecast method, to identify the hot
triples and estimate their frequencies. The general formula
of smoothing is as follows:

In equation2, Et stands for the observation time t and xt
represents the observation in discrete time, α is a constant
with the value (0-1). The high value of α gives signif-
icance to new observations. The reason behind choosing

7http://wiki.dbpedia.org/



Algorithm 1: Adaptive Cache Replacement (ACR)

1 Data: (AccessLogL,HotDataSizeK);
Input : Records,CachedTriples
Output: UpdatedcacheTriples

2 tlatest← max(lastAccT ime, cachedTripples);
3 tearliest← min(lastAccT ime, cachedTripples);
4 estimation← max(estimation, cachedTripples);
5 Function:

ForwardAlgo(AccessLog,HotDataSize);
6 if newAccessTriples in cache then
7 max(estimation, cachedTripples);
8 Calculate(AccessFrequencies, lastAccRecord);

9 Update(estimation, lastAccRecord);
10 Remove(lastAccT ime < t earliest);
11 else
12 newAccessTriples not in cache;
13 Calculate(estimation, lastAccRecord);
14 Remove(lastAccT ime is minimum in cache);
15 addToCache(newAccessTriples);
16 end
17 return UpdatedcacheTriples;

exponential smoothing is its simplicity and high accuracy.
The accuracy of estimation is often measured in terms of
the standard deviation.

Et = α ∗ xt + (1− α) ∗ Et−1 (2)

Logging every record is not the optimal solution to
estimate the access frequency as it degrade the performance
of the system. We proposed our algorithm that classify the
records as hot and cold using the exponential frequency.
We scanned the logs from beginning to end point tb. Upon
encounter, the ACR algorithm update counter by using
Equation 1. The scanning of the logs is still computationally
expensive. We have applied the naive sampling approach,
which does not store all the record but only the certain ones.

2) Cache Replacement: The size of the cache is limited,
so it is essential for the Linked Data application to prioritize
only the important data from the cache. When a user requests
a data which is present in cache the task is accomplished.
In this paper, we proposed an adaptive cache replacement
scheme that only store the hot triples.

In our approach, we maintain the partial records for
specific time period. Suppose, last observed time of the
triple is denoted as last time, we only keep the estimation
of last time. Our algorithm will show the cache hits if
new access triples are in the cache. If the new access
records are not in the cache (cache miss) then the proposed
adaptive cache replacement update its estimation for the new
triples. This approach will place the hot triples in the cache

and replace with fewer access triples. In algorithm 1 we
described the adaptive cache replacement for estimating the
number of accessed triples using the exponential smoothing.

III. EVALUATION

To evaluate the effectiveness of proposed approach, few
experiments were performed on real datasets. The results
outperform the current state-of-the-art cache replacement
approaches.

Datasets: In our evaluation, real world queries we utilized
provided by USEWOD 2014 challenge8. First the query
logs were analyzed from SPARQL endpoints. The query
log contains IP address, timestamp, query and userID. The
valid queries were extracted (approx 198,000) from the log
the syntax of query was checked according to SPARQL1.1
specification. The data was stored inside the Virtuoso server.

Performance Metrics: In this paper, well-know perfor-
mance metrics such as hit rate was applied to compare our
approach with LRU and LFU. The cache hit rate is computed
as follows:

HitRate(HR) =

∑N
i=1 qi
N

(3)

The hit rate is widely used as a standard for performance
evaluation. The parameter qi is a Boolean number which
is used to calculate the hit rate. Whereas the N is a total
number of the hit counts.

The comparison of Hit Rates: The proposed approach
was compared with the traditional cache replacement al-
gorithms such as LRU and LFU as shown in Figure 3.
When the cache size increases, the performance of existing
approach decreases which is not experienced in our pro-
posed ACR. The performance of LFU was worst among
other replacement scheme with the lowest hit rate. As the
exponential smoothing has only one parameter α, the choice
of α mostly depends on the performance of the cache. We
have set the value to 0.05 due to the high accuracy of results
obtained.

Time Overhead: Figure 4 shows the time of average hit
rate of our proposed ACR with the state-of-the-art solutions.
Most of the existing solution take almost 20 times delay
as compared to the ACR.The proposed approach used the
exponential smoothing which produced better results in
terms of time overhead as compared to existing approaches.
The cache is limited and more memory space is required for
ACR algorithm, so there is a need for indexing algorithm
to improve caches from our observation, we evaluated that
the the server overhead is another area which needs to be
analyzed further. As the pre-fetching of hot triples from
SPARQL endpoint initiate high rate of overhead on server
side. Since, the aim of this paper is to accelerate the query
and propose an adaptive solution, so these overheads are
beyond of the scope of the current work.

8http://usewod.org/usewod2014.html



Figure 3: Hit Rate comparison with LRU and LFU

IV. CONCLUSION

In this paper, we proposed an adaptive cache replacement
policy to improve overall querying performance on big
semantic data. Our proposed approach utilizes the expo-
nential smoothing, a forecast method, to estimate the hot
triples (i.e., frequently accessed). The process starts with
extracting the queries from log. After the extraction phase,
we applied forecast method to keep the frequent access
triples in the cache. Our estimation based on the exponential
smoothing was able to predict better result than existing
LRU and LFU. The experimental results revealed superior
performance of adaptive cache replacement approach as
compared to existing approaches. In future, we will apply
our approach in RDF archive to accelerate the processing
on large knowledge bases.

V. ACKNOWLEDGMENTS

This work was supported by Korea Research Fellowship
program funded by the Ministry of Science, ICT and Fu-
ture Planning through the National Research Foundation
of Korea(NRF-2016H1D3A1938039) and this research was
also supported by the MSIT(Ministry of Science and ICT),
Korea, under the ITRC(Information Technology Research
Center) support program(IITP-2017-01629) supervised by
the IITP(Institute for Information & communications Tech-
nology Promotion). This work was supported by Institute
for Information & communications Technology Promo-
tion(IITP) grant funded by the Korea government(MSIT)
(No.2017-0-00655).

REFERENCES

[1] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data-the
story so far,” International journal on semantic web and
information systems, vol. 5, no. 3, pp. 1–22, 2009.

[2] M. Martin, J. Unbehauen, and S. Auer, “Improving the
performance of semantic web applications with sparql query
caching,” in Extended Semantic Web Conference. Springer,
2010, pp. 304–318.

Figure 4: Time overhead comparison

[3] S. Podlipnig and L. Böszörmenyi, “A survey of web cache
replacement strategies,” ACM Computing Surveys (CSUR),
vol. 35, no. 4, pp. 374–398, 2003.

[4] P. J. Denning, “The working set model for program behavior,”
Communications of the ACM, vol. 11, no. 5, pp. 323–333,
1968.

[5] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and
C. S. Kim, “Lrfu: A spectrum of policies that subsumes the
least recently used and least frequently used policies,” IEEE
transactions on Computers, vol. 50, no. 12, pp. 1352–1361,
2001.

[6] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang, “A dis-
tributed graph engine for web scale rdf data,” in Proceedings
of the VLDB Endowment, vol. 6, no. 4. VLDB Endowment,
2013, pp. 265–276.

[7] J. J. Levandoski, P.-Å. Larson, and R. Stoica, “Identifying
hot and cold data in main-memory databases,” in Data En-
gineering (ICDE), 2013 IEEE 29th International Conference
on. IEEE, 2013, pp. 26–37.

[8] J. Lorey and F. Naumann, “Caching and prefetching strategies
for sparql queries,” in Extended Semantic Web Conference.
Springer, 2013, pp. 46–65.

[9] N. Papailiou, D. Tsoumakos, P. Karras, and N. Koziris,
“Graph-aware, workload-adaptive sparql query caching,” in
Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data. ACM, 2015, pp. 1777–
1792.

[10] N. Megiddo and D. S. Modha, “Arc: A self-tuning, low
overhead replacement cache.” in FAST, vol. 3, no. 2003, 2003,
pp. 115–130.

[11] E. J. O’neil, P. E. O’neil, and G. Weikum, “The lru-k page
replacement algorithm for database disk buffering,” ACM
SIGMOD Record, vol. 22, no. 2, pp. 297–306, 1993.

[12] B. Berendt, L. Hollink, V. Hollink, M. Luczak-Rösch,
K. Möller, and D. Vallet, “Usewod2011: 1st international
workshop on usage analysis and the web of data,” in Pro-
ceedings of the 20th international conference companion on
World wide web. ACM, 2011, pp. 305–306.


