
Context Awareness in Large Scale Ubiquitous Environments with a Service
Oriented Distributed Middleware Approach

Saad Liaquat Kiani, Maria Riaz, Sungyoung Lee, Young-Koo Lee

Real Time & Multimedia Lab, Kyung Hee University, Giheung, Yongin, Gyeonggi-Do, 449-701,
 South Korea

{Saad, Maria, Sylee}@oslab.khu.ac.kr, Yklee@.khu.ac.kr

Abstract

 Various components of context aware middleware

infrastructure work collectively to enable physical spaces
to be transformed into computationally active and
intelligent environments by providing context synthesis
and provision services. In this paper, we discuss the
requirement of physically separating the components of a
context aware middleware in a distributed environment
and present the design and implementation of Context
Aware Middleware for Ubiquitous Systems (CAMUS)1.
Issues related to distributed coordination within the
middleware in terms of component discovery and
management and multiple context domains are also
discussed in order to elaborate service oriented approach
for providing context awareness in large scale ubiquitous
environments.

1. Introduction

Context aware computing provides services that are
appropriate for a person’s context, interpreted as any
information that describes the setting of the user’s
activities, with emphasis on the physical attributes: time,
place, people, physical artifacts, and computational
objects. Augmented with ubiquitous computing [1],
context awareness allows handheld devices, sensors,
computer systems integrated with wired and wireless
networks to play a functional role in our everyday life.

Different approaches have been proposed for building
context-aware applications and services. Anind Dey et al
[2] have built a Context Toolkit to support rapid
prototyping of certain types of context-aware applications
by providing a number of reusable components. Besides
the Toolkit approach ([3], [4]), middleware
infrastructures have been proposed [5], [6], [7]

encompassing uniform abstractions and reliable services
for common operations, support for most of the tasks
involved in dealing with contexts, and thus simplify the
development of context-aware applications. While
different in approach, all infrastructures have the same
goal of gathering environment features and transforming
them into deliverable context. The tasks involved in such
a system can be generally categorized as sensor data
acquisition mechanisms, context formation techniques and
context delivery methods.

1 This research was supported by the MIC (Ministry of Information and

Communication), Korea, under the ITRC (Information Technology
Research Center) support program supervised by the IITA (Institute
of Information Technology Assessment)

The authors have proposed a Context Aware
Middleware for Ubiquitous Computing (CAMUS) to
address the discussed issues. Iin this paper we will focus
our discussion of CAMUS towards the distributed nature
of the infrastructure, coordination and management
aspects. Sec. 2 presents the overview of the CAMUS and
is diagrammatically depicted in Fig. 1.

Figure 1. CAMUS middleware architecture modules
mapped into 4 separate functions

Sec. 3 lists the issues which render a distributed

middleware approach necessary for implementation and
deployment of the middleware. The design considerations

for the coordination framework which lead to a service
oriented design are explained in Sec. 4 and Sec. 5
respectively. Prototype implementations, runtime
overview of CAMUS infrastructure and execution
snapshots are given in Sec. 6. Sec. 7 concludes with an
analysis of our framework and future directions in.

2. Functional Overview of CAMUS

The CAMUS architecture is modeled to provide

context aware services in four steps that include sensor
access, feature extraction, context synthesis and context
delivery. The lowest layer of CAMUS consists of a
Sensor Access Module (SAM) which provides unified
access to hardware sensors. SAM, as depicted in Fig. 2,
provides a Hardware Abstraction Layer (HAL) which
masks the heterogeneity of the environment sensors from
the upper layers of the system. It provides a sensor driver
API which allows native sensor drivers to be used to
access the sensors in a unified manner.

Figure 1. Sensor Access Module (SAM) includes a
Manager, HAL layer, pluggable drivers for various sorts of
sensors and provides a unified interface for upper layers
to query the sensors and retrieve information

Feature Extraction Agents (FXA) are sensing agents
that extract the most descriptive features from the sensors
through the SAM. In order to have a more expressive
representation of information related to the user’s
environments, features are further quantized or
segmented, resulting in a set of symbolic values that
describe concepts from the real world. The quantized
features are encapsulated in the form of a ‘Feature Tuple’
and stored in Feature Tuple Spaces (FTS). The use of
‘feature’ abstraction allows context synthesis engine to
work on more descriptive input rather than raw sensor
values. This also allows for customization of feature
extraction algorithms in a way that two entities requiring
input from the same sensor can use different FXA that are
tailored to their particular requirements. To facilitate the
identification of individual features uniquely as well as
collection of features by the same source a unique feature
identifier is allocated in conjunction with the sensor and
type identifiers to each Feature Tuple (FT) in the space.

FT= {Sesnor_ID, Type_ID, Feature_ID,
Feature_Value, Probability, Timestamp}

Feature Tuple Space (FTS) is employed as underlying

storage mechanism. Features are stored directly as objects
independent in space and time and decoupled from the
context generating processes; an important advantage in
the ubiquitous environment in terms of interoperability
and scalability. Various sub-modules for feature
extraction and context formation dynamically interact in
the middleware by mere flow of objects in and out of the
FTS. Current FTS implementation in CAMUS is done on
top of IBM TSpaces [8] with extended read, write
methods and customized events.

Feature - Context Mapping layer performs the mapping
required to convert a given feature into elementary
context using reasoning mechanisms [9] and base on the
meta-information saved in the ontology repository.
Ontology Repository provides the basic storage services in
a scalable and reliable fashion and contains the domain
ontology (concepts and properties), contextual
information (including both elementary and composite
contexts), and meta-information. Reasoning Engine is a
collection of various pluggable reasoning modules to
handle the facts present in the repository as well as to
produce composite contexts. Reasoning mechanisms
based on various kinds of logic have been employed, e.g.
description logic, first order logic, temporal and spatial
logic, fuzzy logic, machine learning mechanisms like
Bayesian and neural networks, depending upon the type
of contextual information being produced. Context
Aggregator is responsible for satisfying certain context
queries and providing context to interested applications
through Context Delivery Services.

3. The Case for Distributed Middleware

Most of the current context aware systems that have

been prototyped are limited to providing context at a
small physical scale e.g. a campus environment [9], a
laboratory, a home [10] etc. At such a scale, the problems
of a distributed environment do not present themselves
adequately since the sensors are confined to a limited
space (allowing easy sensor management), the context
synthesis and delivery services run on a single system,
system contact points are known [2] and dynamic
discovery of system services is not required. In a practical
scenario, an effective context aware system will provide
context services over a vast stretch of environments
ranging from homes, campuses, market places to city
blocks and larger precincts. To manage such extended
spaces it is necessary to separate the overall environment
into smaller logical domains and incorporate a robust
coordination and management framework as dictated by
following reasons:

• The limitation in the communication range of most
sensors makes it necessary for input gathering
software components to exist in physical proximity
to the sensors. Since sensors are diversely deployed
in a ubiquitous environment, multiple input gathering
components of a context aware system require
coordination and management for data procurement.

• The synthesis of context is a complex process
because environment sensors cannot pinpoint users
activities in an exact manner and user context has to
be interpreted using logical, rule based systems or
systems based on Bayesian networks etc. The
complexity involved in context synthesis may require
special computing devices for efficient performance.

• Context is not limited to a confined physical space
since a typical user of context provision services is
mobile, moving from one domain to another e.g. a
commuter traveling from home to office and then to
some market place. Employing a single system to
manage context synthesis and delivery for a large
environment consisting of many sub-domains can be
performance limiting. It is best that the whole
environment is segregated into separate logical
domains and clone sub-systems handle the steps
involved in the context delivery process in each
domain individually.

In order to carry out these varying specialized tasks
and incorporate a considerably large number of hardware
and software clients and contributors, a distributed setup
becomes inevitable. Objects that interact in a distributed
system need to be dealt in ways that are intrinsically
different from objects that interact in a single address
space [11]. Various techniques such as agents based
interactions [12] and broker services [6], [7] have been
employed for this purpose. In CAMUS, following
requirements for coordination arise when functionality is
distributed amongst components on specialized systems.

3.1. Logical and Physical Separation

The foreseeable problem that is related to
heterogeneous sensors deployed in the environment is the
limited communication range of sensors e.g. RFID,
infrared, blue-tooth radio enabled sensors. It implies that
the software components responsible for managing the
sensors (start, stop, reset, discover, register etc) and
retrieving measurements of environmental parameters
have to be located in proximity to the sensors. However,
deploying sensor access components close to sensors is a
tricky task due to the distributed nature of sensors. With
the distribution of sensors being wide and sparse,
deployment of access components close to sensors
becomes difficult and we have to adopt a divide and
conquer strategy by expending more than one access

module to cover the set of sensors exhaustively and
combining their results for context generation later on.

In context aware systems, the raw values retrieved
from sensors are initially encapsulated in a data format
before being synthesized into context. Since an entity’s
context is an interpreted result from a collection of
features, it cannot be derived from a single sensory
source. This constraint necessitates that such intermediate
data is placed in storage till adequate information sources
contribute and reasonable context can be inferred. In
CAMUS, this underlying storage mechanism for data
acquired from sensors is the FTS as discussed in Sec. 2
and provides a domain-wide persistent space.

3.2. Context Domains

Ubiquitous computing environment is characterized by

various domains e.g. home, office, university etc. To
formally model context information to represent a
particular domain, individual components need to be
affiliated with a specific domain to relate coherent
environments and entities, and to confine them within a
logical boundary. A functional context aware system will
be entrusted with context generation of a considerable
number of entities and the combined effect of context
inference, repository access and context history storage
amounts to a computationally demanding task. Instead of
employing a single context synthesis component to
interpret context on behalf of all entities, the concept of
separation of concerns based on geographical or logical
boundaries has been implemented in CAMUS where
individual domains are responsible for context
management within domain boundaries e.g. home and
university domain in Fig. 3.

Figure 3. A scenario where individual components are
associated with a single domain at a time

4. Design Considerations for Coordination

CAMUS has been designed to be deployed not as a

single standalone infrastructure, but as multiple clone
systems each responsible for managing context awareness
in its allocated zone and interacting with other CAMUS

instances for inter-domain context sharing. In Fig. 3 the
core components of CAMUS system, namely SAM, FTS
and context synthesis components are logically bound to
a single domain. Their functionalities are restricted to
serving context in their respective area of allocation.

Since various components are deployed physically
apart from each other within a given domain, the
foremost issue that presents itself here is that of discovery
of individual components. A mechanism is required by
which all the components can make themselves, their
capabilities and functionalities known to others. The
requirements and design constraints which lead us to a
service oriented solution are listed as follows:

1. Registration of components capabilities and

services
2. Discovery of individual components by peers
3. Searching of components based on required

functionality
4. System safeguard against temporary failures of

individual components
5. Scalability to allow for system growth without

reconfiguration

5. Service Oriented Approach to Middleware
Coordination

CAMUS coordination sub-system is based on Service
Oriented Architecture (SOA) [13] where core
components are distributed services residing on the
network to be published, discovered and invoked by each
other. It also allows a software programmer to model
programming problems in terms of distributed services
offered by components to anyone, anywhere over the
network. To implement CAMUS architecture based on
SOA, several existing technologies were investigated
including Web Services, Java RMI, Jini [14], UPnP and
CORBA; which are capable of, to one extent or another,
satisfying the stated requirements. For reasons stated in
Sec. 7, Jini technology was found to be the closest match
to our requirements. Figure 4 shows core CAMUS
services interacting with each other and the flow of
information is also depicted.

The discovery and registration process among modules
is facilitated by Jini while the internal working of each
module is independent of the underlying coordination
mechanism. When a service becomes available, it sends a
registration message to the lookup service and makes
itself known to others. Modules can also discover each
other by querying the lookup service. When a component
becomes available, it joins a specific domain by
registering the attributes and capabilities it affords along
with a downloadable proxy with a service registry,
specifically a Jini Lookup Service (LUS). Other

components can discover the service by looking up
specific attributes they are interested in. When the module
of interest becomes available, its proxy is downloaded
from the registry and is used for communicating back and
forth between components.

Figure 4. Interaction between modules via Jini with
respect to data and communication messages

The attributes published by components vary from
basic properties such as name, service type, location, and
status to specialized capabilities of the module for more
specific lookup provision. Components can specify the
location during lookup operations so they can locate other
components (FTS in this case) in their proximity.
Similarly, queries can be further restricted to domains
memberships, e.g. an FTS belonging to ‘University’
domain may search only for SAM instances located in
that domain. For instance, an FTS publishes following set
of attributes during its individual registration:

Entry FTSAttributes [] = new Entry [7];
FTSAttributes [0] = new Location (“room 312”,
“floor 3”, “engineering building”);
FTSAttributes [1] = new Name (“RTMM Lab FTS ”);
FTSAttributes [2] = new Status (StatusType.NORM);
FTSAttributes [3] = new Domain (“University”);
FTSAttributes [4] = new FTSCapability (READ);
FTSAttributes [5] = new FTSCapability (WRITE);

In a scenario where system users increase in number or

the system has to manage a larger area equipped with a
greater number of sensors, sudden changes and
unpredictability in system configuration becomes
inevitable leading to an increase in the responsibility of
system components which may serve as a performance
penalty. To meet this challenge at runtime, one of the
solutions is to increase the number of system components
handling the tasks that now offer an increased workload.

In CAMUS, an increase in the number of sensors in a
domain can be accommodated by the deployment of
additional sensor access modules and/or feature tuple
spaces as shown in Fig. 6.

Efficient coordination amongst components requires
that the increase in number of components does not
hamper the discovery and registration process. For this
purpose, multiple lookup services handling the task of
discovery and registration are federated and the clients’
(middleware services) queries are distributed across a
number of lookup services to balance the load on the
system and thus avoiding bottlenecks.

Figure 6. A hypothetical organization provides city wide
context delivery service. A wide area sensors network is
deployed to retrieve environment and user related data.
Multiple SAMs are deployed to access sensors and feed
features into FTS deployed conveniently across the city.

6. Implementation Overview

The authors have implemented the CAMUS
middleware infrastructure using Java and the
coordination infrastructure is based on Jini technology.
Individual components of CAMUS are deployed as
services and their responsibility is limited to logical
domains. After individual startup of core components
(SAM, FTS, Context Repository and Ontology Server,
Context Aggregators and Delivery Services), the
middleware self configures itself to form a domain. A
collection of drivers for sensors and feature extraction
agents for multiple purposes have been made available as
Java jar files. Available sensors include audio, video,
RFID tags and readers, Mote Kit sensors including light
intensity, temperature and humidity sensors etc.

This collection of sensors and their respective feature
extraction agents have been used to prototype a number of
context aware applications, e.g. the well known meeting
room scenario where presence of sufficient participants is
detected by the system through sensor information,
Presentation material is distributed to their devices if
necessary, actuators are used to dim room lights,
presentation is projected and room temperature is kept to
an optimal level. Another application that prototypes the
knowledge sharing between two domains, Home and
University, has been implemented. The aim is to make a
user’s context information related to one domain
accessible while he is physically present in another
domain. The motivation behind this is the mobile nature
of the user and a good example of such a user is a
university student who commutes between his apartment
and the university campus everyday.

7. Analysis and Future Work

In the existing solutions for context awareness, a
variety of approaches have been tried to enable
coordination in the framework. In [2], XML messages
over HTTP (TCP/IP) are used between various
components for this purpose. This approach is useful
since both these protocols are practically ubiquitous.
However, the toolkit does not provide a discovery
mechanism and the communicating components need to
know the exact location of each other in order to interact,
hence the coordination is not dynamic and scalable. A
number of middleware solutions use Corba based
coordination and communication [16], [17] which
provides dynamic resource discovery but due to its hard-
state registration and lack of support for leasing
mechanism, the system behaves reactively instead of
proactively to the changing system dynamics.

Implementation of our system in Java allows us to
utilize the Java activation framework [18] as a
performance enhancing measure through which services
can be transferred from main memory to persistent storage
when idle, and can be made available as and when they
are requested by a client. Activation also aids in fault
tolerance when crashed service is restarted from the last
known good configuration.

Jini was found out to be the closest match to the
specific requirements of our system. Particularly, the
possibility of querying components by attributes,
downloadable proxies and independence from transport
protocol were the main support features which were found
lagging in other similar technologies such as UPnP.
Moreover, the advantages of leasing, remote and
distributed event notification model and event mailboxes
provided by Jini can be utilized to full extent in
distributed middleware architectures.

As a task for future enhancements, we aim to extend
the service search capability available in Jini by
identifying and incorporating service attributes related to
services in a context aware domain. Another area is the
representation scheme for data acquired from the sensors.
Most systems utilize a single representation scheme for
both elementary sensor data and higher level context by
using a variety of schemes such as name-value pairs in
XML format [2], black-board systems [15], object
oriented representation [16], and ontologies [17].
However, separation of concerns dictates a two-level
representation scheme for representing elementary data
gathered from the sensors at a lower level and contextual
data formed after synthesis at a higher level. We employ
the black-board approach (tuple repository) for
representing sensor data and ontologies for representing
context. The combination of these two representation
schemes results in greater flexibility and loose coupling
at the sensor level and provision of common
understanding and higher semantic representation at the
contextual level.

To summarize, the authors have discussed the
requirements related to distributed coordination within
context aware middleware infrastructures in terms of
component discovery and management, dynamic system
state and multiple context domains. A service oriented
coordination framework based on Jini Network
Technology is presented to address the issues and
example applications that use the distributed middleware
for context awareness are also discussed.

References

[1] Weiser, M.: The Computer for the 21st Century. In:
Scientific America. (Sept. 1991) 94-104; reprinted in IEEE
Pervasive Computing. (2002) 19-25.
[2] Dey, A.K., et al.: A Conceptual Framework and a Toolkit
for Supporting the Rapid Prototyping of Context-Aware
Applications. In: A Special Issue on Context-Aware
Computing, Human-Computer Interaction (HCI) Journal, Vol.
16. (2001).
[3] S. Jang, Woo, W.: Ubi-UCAM: A Unified Context-Aware
Application Model. In: Context 2003, Stanford, CA, USA. (Jun.
2003).

[4] Gellersen, H.W., Schmidt, A., Beigl, M.: Multi-Sensor
Context-Awareness in Mobile Devices and Smart Artefacts. In:
Mobile Networks and Applications, Vol. 7. (Oct. 2002) 341-351.
[5] Hong, J.: The Context Fabric.
http://guir.berkeley.edu/projects/confab/.
[6] Ranganathan, A. and Campbell, R.H.: A Middleware for
Context-Aware Agents in Ubiquitous Computing Environments.
In: ACM/IFIP/USENIX International Middleware Conference,
Brazil. (Jun. 2003).
[7] Harry, C., Finin, T., and Joshi, A.: An Intelligent Broker for
Context-Aware Systems. In: Ubicomp 2003, Seattle,
Washington. (Oct. 2003).
[8] Wyckoff, P.: TSpaces, In: IBM Systems Journal, August
1998.
[9] Burrell, J. and Gay, G.K. (2002). E-Graffiti: evaluating real-
world use of a context-aware system. In: Interacting with
Computers 14 (2002), 301-312.
[10] Kidd, C.D., et. al.: The Aware Home: A Living Laboratory
for Ubiquitous Computing Research. In: Cooperative Buildings,
http://citeseer.ist.psu.edu/kidd99aware.html (1999) 191-198
[11] Waldo, J., Wyant, G., Wollrath, A., Kendall, S.: A Note on
Distributed Computing. In: Mobile Object Systems: Towards the
Programmable Internet. Springer-Verlag, Heidelberg, Germany,
April 1997, pp. 49-64.
[12] Yang, K., Galis, A.: Policy-Driven Mobile Agents for
Context-Aware Service in Next Generation Networks. In:
Mobile Agents for Telecommunication Applications (MATA),
5th International Workshop, Morocco, (Oct. 2003).
[13] Furmento, N., Hau, J., Lee, W., Newhouse, S.: Darlington,
J. Implementations of a Service-Oriented Architecture on top of
Jini, JXTA and OGSA. In: Proceedings of the UK e-Science
Program All Hands Meeting 2003, Nottingham, UK. Sept., 2003
[14] Sun Microsystems, Inc.: JiniTM Architecture specification.
http://www.sun.com/jini/specs/.
[15] Mamei, M., Zambonelli, F., Leonardi, L.: Tuples on the
Air: A Middleware for Context-Aware Multi Agent Systems. In:
23rd International Conference on Distributed Computing
Systems Workshops (ICDCSW'03), Providence, Rhode Island,
USA, May 2003.
[16] Román, M., et al.: Gaia: A Middleware Infrastructure to
Enable Active Spaces. In: IEEE Pervasive Computing, pp. 74-
83, Oct-Dec 2002.
[17] Yau, S. S., et al.: Reconfigurable Context-Sensitive
Middleware for Pervasive Computing,” IEEE Pervasive
Computing, joint special issue with IEEE Personal
Communications, 1(3), July-September 2002, pp.33-40.
[18] William Grosso: Activation Framework. In: Java RMI,
O’Reilly & Associates, Inc. CA 95472, USA, October 2001 Ch.
17.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

