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Abstract—To build up a state-of-the-art semantic scene seg-
mentation model, a balanced combination between coarsely and
finely contextual details is required for eliminating class-wise
ambiguities and reaching high accuracy of pixel-wise labeling,
respectively. Accordingly, with deep learning integration, prior
works have achieved impressive performance in general, but
found difficulties in correctly labeling medium to small objects.
For the purpose of overcoming such issue, this paper proposes a
deep convolutional network with bracket-style decoder, namely
B-Net, to leverage the utilization of features learned at middle
layers in the backbone networks (encoder) for constructing a
final prediction map of densely enhanced semantic information.
In particular, every feature map of interest combines with its
adjacent version of higher spatial resolution through lateral
connection modules to produce finer outputs that repeat such
routine round-by-round until retrieving the finest-resolution map
for dense prediction. Consequently, benchmarking results on
CamVid dataset showed the effectiveness of the proposed method
with mean class-wise accuracy, pixel-wise accuracy, and mean
union intersection of 76.2%, 87.1%, and 66.4%, respectively.

Index Terms—Convolutional Neural Networks, CNN, semantic
image segmentation, pixel-wise labeling, bracket-style decoder.

I. INTRODUCTION

Since gaining huge advantages from the recently fast-paced

development of computing resources, e.g. graphical processing

units (GPUs), along with the exponential growth of big visual

data, deep Convolutional Neural Network (CNN) has emerged

with breakthrough performance in various areas of computer

vision. Accordingly, there has been an enormous amount of

research works which attempts to utilize CNNs for tackling

semantic segmentation, a problem of labeling every pixel in

an input image given a predefined number of object classes

for complete scene understanding. Obviously, such high-level

task can be widely deployed in many modern applications

like autonomous driving, augmented reality, computational

photography, etc [1] and hence, becomes one of the top

trending research fields in machine vision.

It can be realized that most of the state-of-the-art semantic

segmentation methods utilize backbone CNN architectures

(which are originally designed for dealing with large-scale

image classification problem, e.g. AlexNet [2], VGGNet [3],

GoogleNet [4], ResNet [5]) as fine-to-coarse feature encoders

from which diverse manipulations are referred to generate

pixel-wise labeled maps having same spatial size as that of

the inputs. Concretely, in the aforementioned deep models,

outputs of late layers get significantly deeper while their spatial

Feature maps of interest in the encoder Convolution
Identity Connection module

Up-sampling
Feature maps inferred in the decoder

Fig. 1. Conceptual diagram of the proposed B-Net: Top-down blue rectangles
represent typically fine-to-coarse feature maps (with spatial size decreasing
gradually) in the backbone CNN (encoder). For decoding, every of those
feature maps, except for the highest-resolution one, is up-sampled and then
combined with its adjacent higher-resolution version by connection modules
(copper circles) to infer finer output feature maps (green rectangles) that repeat
the same procedure round-by-round until retrieving one final prediction map
of highest resolution (the rightmost green rectangle).

dimension reduces drastically compared to those of earlier

layers, e.g. it is 32x downscale from the raw input to the

resulting map of the 5th convolutional layer in the VGG16-

Net [3]. Subsequently, for effectively transforming the coarse

feature maps containing global context to the final image

filled with intensities of label values without any ambiguities

and distortions, it is critical to define a scheme be able to

balancedly integrate various contextual information learned

from different layers of the backbone CNN into a proper up-

sampling strategy. With such observations on decoding man-

ner, existing deep learning based research works can be cat-

egorized into two major groups: asymmetric- and symmetric-
structured networks. Generally, the former represents semantic

segmentation models that use distinguished up-sampling plan

and/or various layer-wise ensemble styles, while the latter

reverses the architecture of the feed-forward network with

supplemental manipulations to infer desirable prediction maps.

Some typical research works belonging to the asymmetric-
structured group are highlighted as follows. Long et al. [6]

made a debut for introducing an end-to-end trainable fully

convolutional network (FCN) that makes feature maps of

interest, which are yielded by different layers in the backbone

CNN, same size to each other by implementing learnable

transpose convolutions (fractionally strided convolutions) on

smaller-sized ones and then fuses them for the prediction at
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pixel level. However, FCN still remains two essential draw-

backs: (i) unbalanced aggregation between recovered local

and global information because their partial skip connection

scheme does not take into account features of early layers

and (ii) taking up-sampling of large stride, e.g. 8x, 16x or

32x, in a single operation clearly leads to heavy ambiguities

in the final prediction map. From the literature, corresponding

solutions are divided into two major ways: one tries to deploy

additional network streams for collecting globally semantic

information to eliminate noises and ambiguities in the main

stream of pixel-wise labeling such as ParseNet [7], HistNet [8],

HolisticNet [9], and another puts efforts on incorporating

multi-scale features in a spatial pyramid pooling manner like

DilatedNet [10], DeepLab [11], [12], and PSPNet [13]. It

should be noted that in the second solution branch, all the

mentioned citations introduced dilated (atrous) convolution as

a more effectively computational tool compared to the vanilla

convolution.

In the group of symmetric-structured network, the deep

segmentation model is constructed under the form of encoder-

decoder. Concretely, the encoder is a pre-trained CNN, which

downscales the spatial dimension of feature maps for the

abstract representation of visual details. Meanwhile, the de-

coder is layer-wise reverse version of the encoder, which up-

samples feature maps extracted previously for the generation

of densely labeled content. On the one hand, SegNet [14], [15]

uniquely up-samples feature maps at the decoder by utilizing

corresponding max pooling indices stored during the feed-

forwarding stage, which benefits from end-to-end maintenance

of high response features and fewer parameters but faces the

risk of losing neighborhood information. On the other hand, to

maximize capability of conserving contextual information and

precision of localization during up-sampling at the decoding

phase, other works tried to up-sample the coarsest feature

map of which the up-sampled result is then directly combined

with the corresponding one (in terms of spatial size) in the

encoder to produce an output that continuously takes the same

procedure until obtaining ultimate feature map having spatial

dimension same as the input’s. The combination technique

can be either depth-wise concatenation as in U-Net [16], FC-

DenseNet [17] or specific connection styles including refine-

ment modules in SharpMask [18], RefineNet [19], LRN [20]

and lateral connection module in FPN [21]. Furthermore,

readers may refer to [1] for an exhaustive review of deep

learning based semantic segmentation models.

Briefly, with respect to the up-sampling strategy in existing

works, only the contemporarily coarsest feature map is up-

sampled with multi-scale scheme in the pyramid mode [10]–

[13] or at each staircase in the ladder-like manner [16]–[21]

for further operations. As a result, features extracted from

middle layers of the encoding networks are not exploited

effectively [19] in these models since they just perform a

single role of linking with up-sampled versions of the lower-

resolution maps for ambiguities exclusion. This motivates us

to propose a deep CNN with Bracket-style decoder, namely B-

Net, which is able to leverage the utilization of features learned

at middle layers of the encoder for reasonably boosting the

accuracy of semantic segmentation. As abstractly illustrated

in Fig.1, except for the highest- and lowest-resolution ones,

every feature map of interest simultaneously plays both roles

of (i) the one that is up-sampled and (ii) the one that merges

with the up-sampled map having same resolution on the way

of retrieving dense prediction map. In other words, every

feature map is paired with its closest higher-resolution version

to yield finer ones that continuously do the same process

until forming the final finest-resolution feature map, in which

semantic information is much richer than that of prior net-

works. Basically, the proposed approach can be classified into

the asymmetric-structured group due to the bracket-shaped

structure. For evaluation, our B-Net is benchmarked with

CamVid dataset [22], [23] of which performance in terms of

mean union intersection, class and pixel average accuracy is

competitive with state-of-the-art techniques.

II. METHODOLOGY

This section gives a thorough description of the proposed

B-Net architecture, which is demonstrated in Fig.2.

A. Bracket-style Decoder

In the proposed architecture, we utilize VGG16-Net as the

backbone CNN for extracting deep features from the inputs.

Specifically, the bracket-style decoder takes into account 6
feature maps from the VGG16-Net, i.e. outputs of the 1st

convolution layer, the 1st, 2nd, 3rd, 4th and 5th pooling layers

of which spatial dimensions are same as, 1/2, 1/4, 1/8, 1/16
and 1/32 that of the input images, respectively. Obviously,

the feature maps are chosen such that the spatial dimension is

halved gradually. For convenience, we correspondingly name

them conv1 1, pool1, pool2, pool3, pool4 and pool5. Then,

every feature map of interest (except for the one having

spatial size identical to that of the input images) combines

with the adjacent higher-resolution one via a predefined lateral

connection module for generating finer-resolution feature maps

of the latter’s dimensions. In other words, each pair of feature

maps results in one output having volume size same as that

of the higher-resolution input. Note that a round is made

when n available feature maps are densely matched to produce

n− 1 outputs. Consequently, the number of semantic feature

maps decreases by one while their average spatial resolution

increases round-by-round until there is only one dense feature

map left with favorably semantic information for the goal

of pixel-wise labeling. For instance, as shown in Fig.2, at

round 1, 6 above-mentioned feature maps are paired with

each other (pool5 vs. pool4, pool4 vs. pool3, . . . , pool1 vs.

conv1 1) under the proposed style to generate 5 new feature

maps, which continuously get through the same routine to

produce other 4 finer feature maps at round 2 and so on. In

our B-Net, the final feature map is retrieved after 5 rounds.

Afterwards, we use a 1 × 1 convolutional layer with added

biases to reduce the depth of that ultimate feature volume to

the number of predictive object classes. As a result, feature

map of unnormalized prediction probabilities corresponding
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Fig. 2. Architecture of the proposed B-Net. Given an input image, fine-to-coarse feature maps of interest (in blue cuboids) are extracted from the backbone
VGG16-Net [3] and then densely combined (by modules having the up-sampling scheme of using max pooling indices [14]) to produce preliminarily semantic
features (in green cuboids). Next, those ones are iteratively passed through the same procedure (but combined by modules having another up-sampling plan
called transpose convolution [6]) until achieving final prediction map, of which every pixel is assigned an object class by the softmax classifier. Since every
inferred feature map fuses with its nearest higher-resolution map at each round and the total number of feature maps decreases by one round-by-round, such
process is named bracket-style decoder.

to the labels is obtained. Finally, multi-class softmax classifier

(in testing stage) assigns each pixel of the retrieved prediction

map a specific label. Fundamentally, there are two apparent

advantages of using the bracket structure: (i) missing or

ambiguous details are suppressed significantly since every up-

sampled feature map is always refined by unifying with the

equivalent one in terms of volume size in the encoder and

(ii) semantically contextual information is densely enhanced

in the final feature map because such up-sampling plus dense

mixture strategy is applied for all fine-to-coarse feature maps

in all rounds.

B. Lateral Connection Module

Regarding the combination manner between two neighbor-

ing feature maps of finer and coarser resolution as displayed

in Fig.2, we adopt the lateral connection style in [21] because

of its simplicity yet reasonableness for the B-Net architecture.

However, there are several differences from the original con-

cept. In particular, instead of initially passing through a 1× 1
convolutional layer for reducing the channel dimension, the

finer-resolution input is directly added to up-sampled version

of the coarser-resolution one in element-wise manner because

our up-sampling scheme is already designed to make volume

size of the latter suit that of the former. Subsequently, the

total feature map goes through a 3 × 3 convolution layer for

the purpose of minimizing unexpected artifacts during up-

sampling. As mentioned before, the finalized output, which

contains essential responses combined from the two inputs,

is continuously merged with another neighbor at next round

under similar process until reaching the final feature map

having same spatial dimension as that of the input image.

C. Up-sampling Strategy

With respect to the step of up-sampling in the afore-

mentioned lateral connection module, we utilize two popular

strategies, i.e. up-sampling using max pooling indices [14] and

transpose convolution [6], to maximize the performance of B-

Net. To our best knowledge, this is the first work employ-

ing two types of up-sampling technique within a semantic

segmentation network. Apparently, except for conv1 1, the

remaining 5 feature maps of interest are outputs of pooling

layers in VGG16-Net, therefore, using the unpooling technique

proposed by [14] for up-sampling is clearly an optimal option

at the first round of the proposed decoder. In details, values

in the pool1, pool2, pool3, pool4 and pool5 with previously

stored locations are directly transferred to the corresponding

positions in the up-sampled map, which is initially filled with

zeros. Therefore, it is undeniable that such scheme totally

preserves the contextual information of highest responses

and accordingly improves the capability of collecting more

meaningful knowledge for the densely labeling objective.

Additionally, a 1× 1 convolutional layer is applied to reduce

the channel dimension of the up-sampled feature maps to be

fit with that of the corresponding higher-resolution one. As

of the second round, 3 × 3 trainable transpose convolution

layers, which firstly construct a map having spatial resolution

as desired and then carry out convolution with learnable

weights, are used for up-sampling the coarser map because

the former max pooling indices cannot be deployed anymore.

Also, this fractionally strided convolution is designed to make

all dimensions of the lower- and higher-resolution feature

map identical. In summary, compared to using the transpose

convolution in all rounds, having the first round of using the

unpooling technique gives us two merits: (i) the total number

of trainable parameters in the proposed architecture decreases

by 3.5 millions and (ii) better performance in terms of average

global accuracy, average class accuracy and mean intersection

of union (mIoU) with higher rates of 0.5−1.7% on the CamVid

dataset as reported in Table I. Note that the evaluation metrics

and model settings used for this comparison are enumerated

in section III.B and C, respectively.

III. EXPERIMENTS

In this section, we intensively experiment the proposed B-

Net on the CamVid dataset for the purpose of benchmarking its
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Up-sampling Strategy only transpose conv.
unpooling +
transpose conv.

Number of parameters 29.42M 25.92M
Average class accuracy (%) 72.8 73.8
Average global accuracy (%) 87.3 87.8
mIoU (%) 63 64.7

TABLE I
PERFORMANCE OF TWO DIFFERENT UP-SAMPLING STRATEGIES IN B-NET

ON CAMVID DATASET [22], [23]. BOLDFACE NUMBERS SHOW BETTER

PERFORMANCE.

effectiveness. Specifically, we firstly have a short introduction

of the benchmark dataset and evaluation metrics, then enu-

merate configuration details for training, and finally analyze

on-hand experimental results.

A. Benchmark dataset: CamVid

CamVid [22], [23] is the abbreviation of Cambridge-driving

Labeled Video Database which originally records different

road scenes in 10 minutes by a dashboard camera to simulate

viewpoints from a driving automobile. Then, totally 701

resulted 720× 960 video frames are per-pixel annotated with

32 semantic labels, which makes this dataset a tough challenge

for the semantic segmentation problem. Same as previous

works, we use the split of 367 training, 101 validation and 233

testing images with 12 finalized labels consisting of building,

tree, sky, car, sign-symbol, road, pedestrian, fence, column-

pole, side-walk, bicyclist and the unlabeled (background) to

evaluate the proposed method. Note that all the images are

down-sampled to the size of 360× 480 beforehand.

B. Evaluation Metrics

Same as prior works, we use three major criteria, i.e. mean

global accuracy (mGA) for pixel-wise based evaluation, mean

class accuracy (mCA) and mean intersection of union (mIoU)

for class-wise oriented evaluation. As stated in [1], the class-

wise based measures, i.e. mCA and mIoU, represent the effec-

tiveness of a per-pixel labeling algorithm more accurately than

the pixel-wise based metric like mGA. Note that providing an

in-depth analysis of these benchmarks is beyond the scope of

this work.

C. Training Configurations

In the training stage, each batch of 3 images is sequentially

fed into the proposed B-Net. Remarkably, no pre-processing

techniques are embedded in our work. Besides, in the pre-

trained backbone VGG16-Net, we add trainable batch normal-

ization [24] after each convolutional layer with added biases

and before the non-linear activation ReLU [2]. The similar

order of operation, i.e. convolution, biases addition, batch nor-

malization and ReLU, is also applied to the convolution layer

after the element-wise summation step in the lateral connection

modules. Regarding loss calculation strategy for dealing with

the issue of unbalanced amount of pixels in each label, this

work follows the procedure of [14] in which weighted cross-

entropy loss is utilized with corresponding weights inferred

using median frequency balancing [25]. Accordingly, Adam

optimizer [26] is applied to our model with learning rate

of 0.001, decay rate for moving average of gradient’s first

and second moment of 0.9 and 0.999, respectively. Finally,

the proposed B-Net is implemented using Tensorflow [27]

framework with one Titan X GPU and 32GB RAM.

Notably, with no proper regularization scheme, the overfit-

ting issue, which causes poor performance on unseen data,

is still on the horizon. Therefore, by empirical experiments

on the CamVid dataset, we have found that the proposed B-

Net becomes much robust against the overfitting problem by

following regularization setting: imposing dropout [28] with

dropping rate of 0.5 to (i) the pool3, pool4, and pool5 of

which corresponding outputs replace them if they play the

role of lower-resolution input of lateral connection modules

at round 1 and (ii) all the coarser-resolution inputs of lateral

connection modules at round 2. Indeed, utilizing dropout at

early layers of the encoder and/or later rounds of the bracket-

style decoder is not a good choice since it can destroy generic

features like edges, blobs which are important details in the

semantic segmentation problem and/or causes high possibility

of over-regularization, respectively. Obviously shown in Ta-

ble II, compared to the default setting, taking into account

the regularization scheme can improve mCA by 2.4% and

mIoU by 1.7% despite achieving mGA with 0.7% lower rate.

However, as noted previously, the class-wise measures are

higher-fidelity metrics for the evaluation of such per-pixel

labeling problem.

D. Experimental Results and Discussion

For an explicit evaluation and fair comparison (since dif-

ferent works use dissimilar metrics), along with summarized

mCA, mGA and mIoU, we report two separated groups of

experimental results: one contains class-wise accuracies in

Table II and another includes class-wise union intersection

values of each object class in Table III.

In terms of mCA and mGA, despite not being the most

state-of-the-art, the proposed B-Net is still competitive in the

leading portion with mCA of 76.2% and mGA of 87.1%.

About mIoU, our B-Net achieves 66.4% which outperforms

1.1%− 16.2% over the compared works.

With respect to class-wise performance, our optimal model,

i.e. B-Net with dropout, achieves best per-class accuracies in

5 out of 11 labels as reported in Table II. Especially, high

margin is reached at Tree (93.7% vs. ≤ 88.1%) and Road

(98.6% vs. ≤ 98%). Moreover, about the measure of per-class

intersection of union in Table III, the proposed approach gives

a superior performance over the rest in Sky, Pedestrian, Fence,

and Column-pole with higher rates of more than 2.9%, 4.5%,

6.8% and 5.9%, respectively. Clearly, the fact that repeated

connections between all contemporary feature maps in bracket

manner has not only helped the deep model label middle to

small details like Pedestrian, Fence, and Column-pose more

accurately but also enhanced the ability of refining allocation

of large objects like Tree, Sky, Road, and Car. On the other

hand, it should be noted that the proposed technique faces

heavy failure in labeling pixels belonging to the Sidewalk
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Approach Building Tree Sky Car Sign-symbol Road Pedestrian Fence Pole Sidewalk Bicyclist mCA mGA mIoU

SegNet [14] 88 87.3 92.3 80 29.5 97.6 57.2 49.4 27.8 84.8 30.7 65.9 88.6 50.2
Bayesian SegNet [15] 80.4 85.5 90.1 86.4 67.9 93.8 73.8 64.5 50.8 91.7 54.6 76.3 86.9 63.1

ReSeg [29] 86.8 84.7 93 87.3 48.6 98 63.3 20.9 35.6 87.3 43.5 68.1 88.7 58.8
LRN [20] 89.8 88.1 78.5 86.3 61.2 96.8 82.1 59 45.4 92.6 69.7 77.2 - 61.7

B-Net (no dropout) 90.3 88.1 96 81.4 51.3 98.2 80 52.1 42.1 72.6 59.2 73.8 87.8 64.7
B-Net (with dropout) 86.6 93.7 95.6 87.8 47.7 98.6 82.1 64.9 46.3 72.4 62.6 76.2 87.1 66.4

TABLE II
EXPERIMENTAL RESULTS (%) OF PER-CLASS ACCURACY, MEAN PER-CLASS ACCURACY (MCA), MEAN GLOBAL ACCUARCY (MGA) AND MEAN

INTERSECTION OF UNION (MIOU) ON CAMVID [22], [23] DATASET. BOLDFACE NUMBERS REPRESENT THE BEST PERFORMANCE AT EACH CRITERION.

Approach Building Tree Sky Car Sign-symbol Road Pedestrian Fence Pole Sidewalk Bicyclist mIoU

DeepLab-LFOV [30] 81.5 74.6 89 82.2 42.3 92.2 48.4 27.2 14.3 75.4 50.1 61.6
Dilation8 [10] 82.6 76.2 89.9 84 46.9 92.2 56.3 35.8 23.4 75.3 55.5 65.3

LRN [20] 78.6 73.6 76.4 75.2 40.1 91.7 43.5 41 30.4 80.1 46.5 61.6
B-Net (no dropout) 81.5 75 92.3 78.8 41.6 89 59.2 41.1 33.2 67 53 64.7

B-Net (with dropout) 81.4 75.3 92.8 82.5 42.8 89.2 60.8 47.8 36.3 66.4 54.8 66.4

TABLE III
EXPERIMENTAL RESULTS (%) OF PER-CLASS INTERSECTION OF UNION AND MEAN INTERSECTION OF UNION (MIOU) ON CAMVID [22], [23]

DATASET. BOLDFACE NUMBERS REPRESENT THE BEST PERFORMANCE AT EACH CRITERION.

class, with only 72.4% compared to the state-of-the-art of

92.6% in terms of class-level accuracy and 66.4% vs. 80.1% in

terms of class-wise intersection of union. Therefore, intensive

investigation into such issue is the main focus of our future

work.

Furthermore, some typical qualitative results compared with

those of SegNet [14] are illustrated in Fig. 3. It can be observed

that our approach outperforms the competitor in labeling

medium to small details like Pedestrian, Bicyclist, Fence,

Sign-symbol, and Column-pole for better scene understanding.

Also, with respect to large object labeling, the proposed B-Net

can reduce misclassification between the truck, which belongs

to Car class, and the Building significantly as shown in the

second row of Fig.3.

IV. CONCLUSION

This paper has presented an end-to-end trainable deep

CNN model with bracket-style decoder, namely B-Net, for

semantic image segmentation. By a coarse-to-fine strategy

that every feature map of interest extracted from a backbone

network combines with its nearest higher-resolution version

via predefined lateral connection modules, of which finer

outputs continuously do the same routine at each round

until only one finest-resolution feature map is left, semantic

information is densely refined and enhanced in bracket manner

for better pixel-wise labeling. Besides, it is worth noting

that our work utilized two different up-sampling scheme, i.e.

unpooling technique and transpose convolution, to improve the

performance. Accordingly, experimental results have indicated

that the proposed B-Net is competitive with state-of-the-art

techniques, especially on mean intersection of union metric.

Furthermore, to resolve existing drawbacks and leverage the

proposed approach to new heights, our future work focuses

on investigating the failures and exhaustively exploiting the

potentiality of the bracket-style decoder with more variants

and alternatively modern backbone networks.
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