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ABSTRACT 

Advancements in the field of healthcare information management 

have led to the development of a plethora of software, medical 

devices and standards. As a consequence, the rapid growth in 

quantity and quality of medical data has compounded the problem 

of heterogeneity; thereby decreasing the effectiveness and 

increasing the cost of diagnostics, treatment and follow-up. 

However, this problem can be resolved by using a semi-structured 

data storage and processing engine, which can extract semantic 

value from a large volume of patient data, produced by a variety 

of data sources, at variable rates and conforming to different 

abstraction levels. Going beyond the traditional relational model 

and by re-purposing state-of-the-art tools and technologies, we 

present, the Ubiquitous Health Profile (UHPr), which enables a 

semantic solution to the data interoperability problem, in the 

domain of healthcare1.  
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1 INTRODUCTION 

Recent advancements in information and communication 

technologies have led to the rapid expansion in development, 

deployment and usage of policies, software and devices towards 

better management of healthcare services[28]. Technologies, such 

as whole-exome and whole-genome sequencing[40], and 

precision medicine[31], along with smartphone based ECG, 

weight and activity monitors, and continuous glucose monitors[8, 

16], besides others have  made the traditional physician centric 

healthcare systems, financially unsustainable. This has also 

increased the number of  available alternatives and caused an 

improvement in the quality of healthcare support systems and by 

extension the healthcare services, leading to an improved patient-

centric diagnostic, treatment and follow-up process[30, 41]. 

However, this boom, has also led to a lack of interoperability 

between the participating software and devices[26], increased the 

disparity in the quality of healthcare data[25] and created 

communication and coordination gaps between the medical 

service providers and consumers[37]. Mitigating these problems, 

is of utmost importance for achieving ubiquitous healthcare. 

The Ubiquitous Health Platform (UHP), provides a solution to 

the heterogeneity problem in healthcare, by using mediation based 

semantic technologies, in order to resolve the differences between 

medical data, knowledge, processes, and devices. An abstract 

representation of this platform is presented in Figure 1. 

Through the UHP, we aim to develop a comprehensive 

platform for providing standardized Ubiquitous Health Profile 

(UHPr); a complete digital medical persona.  
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Figure 1: The Ubiquitous Health Platform

By using a graph data structure, we define the ontology maps, 

which are used to convert heterogeneous ontologies to a, 

terminology and message level, standardized one. UHP, also 

includes services for mapping conflict resolution, using expert 

intervention and a version control system for managing ontology 

map evolution. Details about the inner working of UHP and the 

motivation behind these services are out of scope of this paper. 

The UHPr, represents a multi-dimensional storage structure, 

which is able to amalgamate medical data produced via, patient’s 

personal input (e.g. surveys), direct intervention of the physician 

(e.g. exported reports from HMIS or CDSS), knowledge sources 

(such as the Clinical Practice Guidelines), medical IoT devices, 

and other sources. The main challenge behind creating, storing, 

and retrieving the UHPr, stem from the large volume of 

heterogeneous patient data, which is produced at varying rates 

(streaming or non-streaming), conforming to formal and non-

formal, messaging standards (like HL7 v2 or FHIR), and 

terminological standards (such as SNOMED-CT or LOINC), and 

the difference in data abstraction. In order to resolve these 

problems, specialized storage and query engines are required[13, 

24].  

In this paper, we present a semi-structured, data curation 

methodology for the UHPr. Through a prototype implementation 

we also evaluated, and are presenting here, some initial results, 

which show a promising start towards archiving and retrieving 

heterogeneous medical fragments for each user, which can then be 

used to build a comprehensive medical history of the patient. 

Through this process, the medical expert will be able to view the 

various aspects of the patient’s medical profile over a period of 

time. Additionally, this amalgamation of patient data can also 

mitigate communication gaps in healthcare service delivery. 

2 MOTIVATION 

2.1 Big “Healthcare” Data 

Relational databases are known for their simplicity, especially 

as the main storage engine behind small to medium scale 

information systems. Consequently, in healthcare a plethora of 

information management systems have been designed around 

traditional relational database management systems (RDBMS). 

The driving force behind this adoption has been, easy integration 

with various programming languages, limited functional 

requirements, lack of need to share data, and the need for 

immediate consistency. However, with over 50% of the world 

population now connected with the internet[12], digital data has 

grown beyond the scope of the traditional RDBMS. In healthcare, 

this has resulted in a paradigm shift; whereby the medical experts, 

are starting to understand the need for scaling out, from the 

traditional physician and hospital/clinic centric approach to a 

more patient oriented one. Proprietary solutions (such as Essentia 

Health2, Omni MD3, and BlueEHR4), and open source HMIS ( 

                                                                 
2 Essentia Health: http://www.essentiahealth.org 
3 https://www.omnimd.com/ 
4 https://blueehr.com/our-services/electronic-health-records/ 
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like openMRS5  and openEMR6 ) are able to create a complete 

digital persona of a patient, by taking into account both direct data 

sources (e.g. the physician) and indirect data sources (e.g. 

insurance records). Yet, most solutions still use the traditional 

relational model of data, resulting in a lack of Big Data solutions, 

in healthcare[34].  

Big “Healthcare” Data, represents, a non-formal 

characterization of Big Data in the healthcare domain. It is 

defined by the 5 Vs, as large “Volume” of patient data, produced 

at different “Velocity” (rate), adhering to a “Variety” of formal or 

non-formal standards, representing Veracity (different quality), 

and holding some implicit “Value”[23]. These attributes are very 

closely related to UHPr and are explained in the following 

subsections. 

2.1.1 Volume. The UHPr consumes data from two types of 

data sources, primary and secondary. Primary data sources, 

require the direct interaction with the patient and include HMIS, 

Clinical Decision Support Systems (CDSS), and IoT devices. 

While, the secondary data sources, provide related information for 

the patient, but can would not require explicit input, such as 

general living habits, Medical Knowledge Management Systems, 

Biobanks, Genome data stores and others.  

When integrated with Biobanks (like UK Biobank with 

500,000 participants[43]), disease studies (such as the mendelian 

disorder risk study with 100 million participants[6]), clinical 

research systems (EHR4CR project with 45 partners in EU[32]) 

and medical devices (producing streaming data using body 

sensors), the storage requirements, scale beyond the scope of any 

traditional RDBMS, and require the use of specialized data 

curation solutions. 

2.1.2 Velocity. Similarly, streaming data produced by medical 

devices, presents a challenge in terms of its timeliness, 

integration, and storage[29, 33]. As a case study, consider a smart 

watch based heartrate monitor, which produces many instances of 

very shallow data, while the EHR produced by an HMIS is 

infrequent, longitudinal, and holds more detailed data. The key 

requirement, for streaming data is low latency, while for non-

streaming data, high reliability, is preferred. 

2.1.3 Variety. Variety in UHPr can be defined in terms of, the 

associated data format and its purpose. Healthcare systems adhere 

to heterogeneous formats, which can be standard based[28] or 

custom[15]. Several semantic reconciliation tools and techniques, 

already exist which can resolve the interoperability problem in 

EHRs[27]. Collection of healthcare data, also suffers from a 

variety of purpose. Medical information systems can be 

categorized based on their target users, which can be patients (e.g. 

continuous glucose monitor), medical experts (e.g CDSS), 

organizations (e.g. hospital management information systems, 

insurance claim systems), or environment (e.g. public health 

systems)[10]. As a result, these systems, only produce data limited 

to their own abstraction level. As a result, the data collected by a 

                                                                 
5 https://openmrs.org/ 
6 https://www.open-emr.org/ 

medical research institute, is at a very different abstraction level, 

then what would be collected by a private clinic. 

2.1.4 Veracity. Another related challenge in UHPr, is that of 

low quality. The domain of healthcare, lacks any golden ontology, 

which can be used to standardize all EHRs. On the contrary, 

EHRs remain valid, while they remain associated with their 

schema conforming information system, but are not useful, 

outside of it. This is due to the use of very different terminological 

and messaging standards and the existence of non-formal custom 

standards. For quantitative data, this problem can be diluted by the 

high volumes of medical data, but same is not true for qualitative 

data[7]. LinkedEHR can be used to create a common platform for 

integrating, primary and secondary data, leading to better support 

for diagnosis and treatment[11, 20].  

2.1.4 Value. Extraction of meaningful, implicit value from 

UHPr is another challenge. Due to the distributed nature of the 

storage engine, and in presence of eventual consistency, the UHPr 

should be able to mimic the accuracy of traditional healthcare 

systems, while also providing new insights, resulting from the 

integration of medical data[21].  

2.2 Data Interoperability  

Heterogeneity in healthcare, is a major challenge, which 

prevents integration, exchange and effective utilization of medical 

data, across system boundaries. The key to solving this problem 

lies in identification of relationships between the participating 

schemas, which can be achieved by using schema matching and 

schema mapping approaches[28]. However, due to the variety in 

format for healthcare systems, this task requires the use of 

semantic technologies, which could be categorized into standard 

based and mediation based approaches. The standard based 

approach, uses mutually agreeable standards, while the mediation 

based approach creates context based translations, from the source 

to target schemas, and vice versa[36]. Linked Data uses the 

standard based approach, for creating such semantic links and 

resolving the heterogeneity problem[5], while Semantic 

Information Layer (SIL)[42] uses the mediation based approach 

for achieving data interoperability in Enterprise Information 

Systems (EIS). 

Implementation of these technologies towards achieving data 

interoperability in healthcare, can not only benefit the physician 

and the patient by reducing overhead and redundant costs and 

saving time, but can also prevent operational waste, and support 

policy makers in improving accountability and privacy[4].  

In UHPr, data interoperability is achieved via a mediation 

based approach, which creates the UHP map from Figure 1. The 

resultant transformations are verified by measuring the data 

quality in terms of its timeliness, completeness, uniqueness, 

validity, consistency, and accuracy[1]. These attributes are 

defined (w.r.t UHPr), as follows: 

 Timeliness ─ An event, is recorded in real-time, after it has 

occurred (Inverse is the time difference between an event 

occurring in the real world and to it being recorded). 
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Figure 2: The UHPr Storage and Model forms

 Completeness ─ All the data, pertaining to an event is 

recorded. (Inverse is the difference between what is recorded 

and what could/should have been recorded). 

 Uniqueness ─ Recording each individual event, once 

 Validity ─ The UHPr schema/container and the UHPr data, 

conforms to a standard. 

 Consistency ─ Recorded UHPr data is similar to what is 

expected/possible. 

 Accuracy ─ UHPr Data is recorded, accurately and mirrors 

the characteristics of the real world event. 

2.3 Healthcare Data Storage Solutions 

Traditional healthcare systems have focused on using 

relational databases for persisting EHRs. Based on the idea of a 

well-structured storage solution, with the ability to uniquely store 

and identify tuples and their inter-relations, relational databases 

are able to achieve Atomicity, Consistency, Isolation, and 

Durability; otherwise known as ACID properties. This kind of 

storage is beneficial for small to medium scaled medical systems, 

with little to no interoperability. However, with the emergence of 

unstructured and semi-structured data, along with high speed 

networks and more complex data models, medical systems are 

now focusing on using NoSQL technologies[14, 38, 39]. NoSQL 

data bases represent the set of non-relational distributed databases, 

which focus on providing scalability, availability and partition 

tolerance in context of the CAP theorem[17]. As a result, NoSQL 

databases are only able to provide Basic Availability, can exist is 

Soft state, but will always Eventually become consistent[2], also 

known as the BASE properties. 

Healthcare data, based on their schema can be categorized into 

four parts, Relational data, Column Oriented data, Graph data, 

Documents and Key-Value maps.  

2.3.1 Relational Medical Data. Medical systems, using a 

RDBMS as data store, provide this data. Here the data instances 

are uniquely identifiable with primary keys, and also contain 

foreign keys to identify their relationships, with other instances.  

2.3.2 Column-Oriented data. Specialized data stores which 

organize their data into columns rather than rows, to optimize 

column-oriented operations are kept in this category. 

Implementation of medical systems using column-oriented data 

stores have shown high scalability and improved performance in 

comparison with traditional RDBMS, and provide a viable 

alternative[9].  

2.3.3 Graphs. Medical systems, which provide data in the 

form of nodes and their associated edges, fall in this category. 

Due to these relationships, which are not bound by any schema, 

data presented in graph form, has more expressability, semantics 

and scalability than the relational model. When optimized, graph 

can allow fast insertions and traversal exploration[3]. 

2.3.3 Documents. NoSQL databases, that use a schema-less 

approach to store data in documents and knowledge sources (such 

as clinical practice guidelines) can provide very fast insertions and 

scalability. The read operations are relatively slower, especially if 

documents are unstructured, requiring deep searches[39].   



Resolving Data Interoperability in Ubiquitous Health Profile using 

semi-structured storage and processing 
SAC’19, April 8-12, 2019, Limassol, Cyprus 

 

5 

 

2.3.3 Key-Value maps. The simplest form of medical data, 

which holds completely unstructured data, providing the fastest 

insertion speed, and slowest querying speed. While it is not 

typically used as a data store, it can be used to store streaming 

data, from medical IoT devices. 

3 Methodology 

The UHPr, represents a logical amalgamation of medical data, 

which represents a complete digital persona of the patient. This 

model and implementation details of the prototype UHPr data 

structure is presented in the following subsections.  

3.1 UHPr version 1 

The UHPr, has two forms, storage and model. Where the 

former represents a semi-structured form, kept in a Big Data 

storage platform, while the later represents an integrated, volatile 

form, which is consumed by medical platforms and experts to 

extract value. 

As shown in Figure 2, Patient data is collected from a variety 

of source, using the drizzle input adapter (which can handle non-

streaming data only. Streaming data will be supported in later 

implementations). The data is mapped to a standard ontology form 

using the UHP Map from the ontology store. This is then send to 

the data curation service, identified as step 3, in Figure 2. Here the 

UHPr is converted to its storage form, whereby data from one of 

the supported types (relational, graph, document, column, or key-

value) is wrapped in a data structure, that also contains a unique 

identifier for the medical fragment, its type (same as above) and 

version information (used for managing mapping evolution). 

Additionally, user identifier (typically the MR number), is 

extracted from the incoming data, along with patient firstname, 

lastname, and date of birth. This information is then used to 

update indexes in the L-Store, which provides a naïve, logical 

indexing service for the medical fragments. The L-Store, 

generates a 128 bit, uuid, the iUHPr, which is mapped against the 

user’s firstname, lastname, and date of birth. The iUHPr is then used 

to build an adjacency list with related medical fragment identifiers 

(im). A possible, semi-relational Entity Relationship Diagram 

(ERD) for the L-Store is shown in Figure 3. 

 

Figure 3: L-Store ERD 

When querying for a patient’s data, the UHPr model builder, 

uses the L-Store to identify the required iUHPr, followed by the 

related medical fragment. For general queries, not related to a 

specific patient, this process is skipped and MapReduce 

algorithms are used to extracting information. Conversion to the 

UHPr Model form, requires the build-up of metadata, which 

contains, the iUHPr, Hash of the UHPr model, list of medical 

fragments names, for the user, and the Identifier Map (L). The 

identifier map, provides an index for the UHPr model. It contains 

key-value pairs of all medical fragments contained in the UHPr 

model. Fragment names, form the key, while their unique 

identifiers from UHPr storage form and position/index in the 

fragment list, forms the value. This can be used to quickly iterate 

over the medical fragments, and filtering only required value, 

based on fragment names. Finally, the UHPr model is delivered to 

the medical expert, containing comprehensive medical history for 

the patient. The two key elements, in UHPr, are the combination 

of different data formats into one composite data structure and the 

use of semi-structured data store to maintain logical indexing. 

3.2 UHPr version 1 Prototype 

 In order to validate the the UHPr model, an initial prototype 

has been developed, which integrates patient data coming from 

OpenEMR patient records and a custom implementation of, expert 

driven medical diagnostic system, the KRSilo. Using Hadoop7 as 

the data storage and processing engine, the UHPr storage form 

and L-Store is kept in HDFS. From here, Hive is used to keep L-

Store in memory, and to create temporary schemas for retrieving 

medical fragments. Initial seeding for the L-Store is done using 

pseudo-random sampling, based on 40 private patient records 

(which we are not allowed to make public), from local hospitals. 

The sample size was 80,000 patient records and 10 medical 

fragments with different versions for each of the two participating 

systems. Since Hive does not support primary keys or foreign 

keys, the ERD from Figure 3, is converted into a hive table, using 

the following queries: 

 

> create external table patientuhprid(firstName string, 

lastName string, dob string, gid string) row format 

delimited fields terminated by ',' lines terminated by '\n' 

location '/Lstore/patientuhprid'; 

> create external table medicalfragment(gid string, 

fragmentId string, fragmentName string) row format 

delimited fields terminated by ',' lines terminated by '\n' 

location '/Lstore/medicalfragment'; 

In HDFS, each individual medical fragment is stored in a 

directory, identified by the related user’s, uuid based “gid” field. 

This ensures, that medical fragments of each user are kept under 

the directory ‘UHP/$gid’. The UHPr storage form is converted 

into UHPr model, by creating a temporary relation in Hive, which 

only exists till the connection remains active.   

                                                                 
7 Our custom deployment is composed of, 1 master and 2 slave nodes, with 1.8TB 

hdfs size, 20MB block size, Block Replication of 3, and 64GB ram on the master, 

while 32GB on the slaves. 
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Using the “gid” from L-Store, the following query provides 

schema-on-read for the medical fragments. 

> create temporary external table uhpr(identifier string, 

fragmentname string, data string, version string) row 

format delimited fields terminated by '|' lines terminated by 

'\n' location '/UHP/609cc551-8197-494a-813d-

ee318dd933d7' ; 

Finally, the data from the Hive table is extracted and pushed 

onto the UHPr model builder, which converts it into JSON form 

and sends it to the UHPr consumer. 

3.3 Results from UHPr version 1 implementation 

Our initial results, resulted in the formation of very large 

number of small sized files. For 80,000 patients with 20 

fragments, a total of 1,500,000 medical fragments were created. 

This change caused the hdfs insertion and bulk retrieval process to 

become very slow. A screenshot of the list all directory command, 

with approx. 7-9 folders shown per minute, is shown in Figure 5. 

 

Figure 5. Slow indexing in HDFS 

Additionally, it is also evident from literature that the 

MapReduce operation employed by Hive is also very slow, when 

dealing with large number of very small files[18, 19]. In order to 

resolve this problem, the storage strategy for UHPr was changed 

to concatenate the medical fragments of every individual user into 

an independent file, leading to the creation of UHPr version 2. 

3.4 UHPr version 2 

The UHPr, version 2, stores the medical fragments of each 

patient into individual files. In this iteration, we got 500 files, 

corresponding to 500 sampled patients (In version 1, this would 

generate 10,000 files), which were inserted in HDFS. The 

insertion process, now finishes in less than 2 minutes at a rate of 

360 files/min. The process is even faster, since HDFS does not 

create extra directories. However, when trying to create temporary 

schemas on HIVE for building the UHPr model, we encountered 

another challenge. HIVE can create a table and use the location 

property to load data from a directory, creating records for each 

file, however it cannot load the contents from a subset of files in 

the directory(open JIRA issue HIVE-951[22]) only and throws an 

error, as shown in Figure 4. 

In order to resolve this problem, we loaded the complete UHPr 

version 2 storage data set into a temporary HIVE table using the 

following query: 

> create temporary external table uhpr(identifier string, 

fragmentname string, data string, version string) row 

format delimited fields terminated by '|' lines terminated by 

'\n' location '/UHPv2/UHP'; 

As shown in Figure 6, an aggregate query, was executed, to 

count the number of records in the newly created uhpr table. A 

total of 10,000 rows were counted using MR job, which took 

67.649 seconds. 

The next step of the UHPr model building process is to select 

all medical fragments for one patient only. Since the “uhpr” hive 

table does not contain the gid, which is the patient identifier, we 

have to create a JOIN query which can combine these 10,000 

fragments with the “fragmentId” and “gid” fields of the L-Store’s 

MedicalFragment table, shown in the Figure 3. This query is as 

follows: 

> select f.identifier, f.fragmentname, f.data, f.version from 

medicalfragment l join uhpr f on (l.fragmentid = 

f.identifier) where l.gid = '2f69eb4e-c35c-4763-954a-

a04eeba501fe'; 

This query took 91.181 seconds with the serialized “data” 

column and returned the correct 20 fragments. However, due to 

limitation of space, the result of the same query without the “data” 

column is shown in Figure 7, which took 86.384 seconds. 

These results provide a proof of concept, and partially validate 

the effectiveness of our ubiquitous health profile, storage model, 

using a semi-structured storage and processing engine. 

 

 

Figure 4. HIVE error, on populating tables from files (not a folder given in path) 
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Figure 6. Count of all rows in the uhpr table 

 

Figure 7. Result of retrieving all medical fragments, except for the data part, for a patient 
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4 CONCLUSIONS 

Data interoperability in healthcare is a major challenge, which 

can be resolved using the Ubiquitous Health Platform. UHP 

provides mediation based semantic reconciliation for 

heterogeneous healthcare data. A key requirement for this 

platform to work is the use of semi-structured storage solution, 

which can handle the scalability requirements associated with the 

large volume of medical data. It should also provide mapping for 

resolving the variety problem, between different data formats, and 

formal and non-formal, schema standards. While we were faced 

with many challenges in the form of a large number of small sized 

files being generated in version 1 of the UHPr, and HIVE only 

populating data from folders, in UHPr version 2. We were 

eventually able to create a prototype implementation of the UHPr 

which is able to provide the a very basic version of the previously 

mentioned services. Additionally, a number of modules have to be 

implemented, like services for handling streaming data, better L-

Store indexing mechanisms, and feedback for improving the 

veracity of medical data. Moreover, while we have extrapolated 

our test samples from real data, access to healthcare data, and real 

world testing is very necessary to identify any problems, before 

the UHP becomes production ready. The future direction involves 

finding solutions to these problems and integrating UHP with 

other medical platforms. 
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