
A Comprehensive Middleware Architecture
for Context-Aware Ubiquitous Computing Systems

Anjum Shehzad, Hung Quoc Ngo, S. Y. Lee, Young-Koo Lee*
Real Time & Multimedia Lab, Kyung Hee University, Korea
{anjum, nqhung, sylee}@oslab.khu.ac.kr, yklee@khu.ac.kr*

Abstract

Ubiquitous computing is viewed as a computing paradigm
where minimal user intervention is necessitated
emphasizing detection of environmental conditions and
user behaviors in order to maximize user experience.
Context-awareness plays vital role in achieving such
user-centered ubiquity. In this paper1, we describe the
desired characteristics of a middleware for context-aware
ubiquitous computing. Four key issues are addressed:
unified sensing framework, formal modeling and
representation of the real world, pluggable reasoning
engines for high-level contexts, and response to the real
world. Our implementation experience indicates that a
comprehensive approach throughout the system layers
results in a flexible and reusable middleware framework.

1. Introduction

Context-aware ubiquitous computing emphasizes on
using context of users, devices, etc. to provide services
that are appropriate to particular person, space and time.
Every computing system dealing with the user should take
into account human behavior in one way or the other to
materialize ubiquitous computing experiences for him. As
we all know that the role of middleware is to ease the task
of designing, programming and managing distributed
applications by providing a simple, consistent and
integrated distributed programming environment; such
middleware-based approach is quite appealing in context-
aware ubiquitous computing [1].

A lot of work has been done in the area of context-
aware computing, in which most of them are only
concerned with one or more aspects in an ad hoc manner.
Context Toolkit [2] uses the concept of widget to obtain
raw contextual information from sensors and passes it
either to interpreters or to servers for aggregation.
Interpreters and servers use simple HTTP protocol for

1 This research was supported by Ministry of Commerce,
Industry and Energy, Korea.

communication and the XML (name-value pairs only) as
the language model for the context. In [3], graph based
model for context aggregation and dissemination is
proposed where contextual information sources are
modeled as event publishers, while context-aware
applications as event subscribers. Context Fabric [1]
provides a distributed context-aware infrastructure to
support the acquisition and retrieval of context data using
an entity-relation style logical context data model,
encoding data in XML and utilizing XPath as the query
language. Gaia [4] is also a distributed middleware
infrastructure supporting context-aware agents in smart
spaces. It adopted a predicate model of context data
encoded in DAML ontologies, and proposed that different
logic reasoning and machine learning techniques can be
adopted to support context inference.

Based on our knowledge, we have come up with a
set of key issues; a context-aware ubiquitous computing
system should tackle in order to successfully deploy in
real life, namely unified sensing framework, formalized
modeling and representation, supporting multiple
reasoning approaches, and finally delivering the context
to applications on semantic matchmaking basis. We have
built and deployed a middleware infrastructure, CAMUS
[5], addressing these challenges. We briefly describe
those challenges in section 2 before explaining how our
detailed architecture dealt with them in section 3. Finally,
we present useful thoughts in section 4 and summarize in
section 5.

2. Key issues in Ubiquitous Computing
Middleware

Our middleware infrastructure addresses the above
mentioned characteristics of context-aware computing
systems and complements the existing middleware
paradigms.

2.1. Sensing the Real World

Ubiquitous environments contain diverse range of
sensors each utilizing its native access mechanisms and

output formats. This leads to potential problems and
complexity in system design and implementation. Thus a
mechanism is required, which serves to extract
information from the heterogeneous sensors and present
to the upper layers for deducing contexts, in a
standardized and unified manner. Meanwhile, sensors are
getting smaller and cheaper to be unobtrusively integrated
into everything from shoes to coffee cups, and becoming
autonomic sensing devices [6]. In such envisioned
scenarios, the middleware system with a unified sensing
framework will be able to synthesize data from all the
sensors to form a more complete picture of the real world.

In our middleware architecture we introduce the
concept Feature Extraction Agent (FXA), a software
abstraction for sensing devices with two key
characteristics:
• Hide the communication details and data polling

frequency of sensors, and expose to upper layers with
a Unified Access Pattern.

• Hide the specific algorithms for processing sensor
data and the specific output format. Provide upper
layers with the most descriptive features extracted
from raw sensor data, in a common data structure of
feature markup format [5].

2.2. Formal Modeling & Representation of Real
World

The behavior of context-aware applications is mostly

characterized by embedding the interpretation logic of
context inside applications, which makes it difficult for
other applications to reuse this information. Thus, in
ubiquitous computing environments, applications need a
shared understanding of context to communicate and
transfer context effectively among them. Also, the
applications demanding the contextual information from
the environment may not have its prior knowledge,
further emphasizing the need for common agreement of
such information. All these problems of heterogeneity,
independent interpretation, and need for interactivity
leads us to think of a formal context model for efficient
utilization of context in ubiquitous computing
environment. The results are storing the context for later
use and communicating it universally with other systems.
Diverse entities like devices, users, and environment
conditions are concepts in a certain domain and their
inter-relation results in their association and dependency
upon each other, e.g. user (John) is watching (inter-
relation) television (device). Therefore, in this regard, we
consider OWL [7] for formal modeling of context in our
system because it allows us to define concepts and their
inter-relationships e.g. describing person, devices,
location etc., and to define instance data pertaining to
some specific time and space, besides providing
advantages of expressiveness, knowledge sharing, logic

inference, knowledge reuse, and extensibility [7]. Also,
OWL’s meta-modeling language (RDF [8]) based
approach makes possible for us to represent meta-
information about sensors e.g. sensor access mechanism,
quantized levels, feature list etc. Based on different
entities e.g. PDAs, mobile phones, ambient displays,
sound intensity, light, temperature, traffic, software agents,
persons, groups etc, we categorize them, in our
framework, mainly into agents, devices, environment,
location and time [5], [9].

2.3. Reasoning for the Facts

Since not all information can be gathered from

sensors, and sometimes the most interesting kinds of
context are those that humans do not explicitly provide,
demanding a need for context reasoning mechanisms. For
instance, the current activity of a user could be inferred
based on a combination of many other contexts, e.g. his
location, his gestures, time of the day, environment status,
etc [5]. Each reasoning mechanism has its own
expressiveness, for example Description Logics (DL) is
suitable for specifying terminological hierarchies while
Spatiotemporal Logic is suitable concerning spatial-
temporal sequence in which various events occur, and
Bayesian Nets [10] are appropriate for learning the
conditional probabilities of different events. Thus a
middleware infrastructure needs to provide support for
incorporating different reasoning mechanisms into the
system, as well as specifying the appropriate mechanism
for each context. This will facilitate not only the system
internal modules to infer high-level context from low-
level or predefined context, but also the applications to
reason for their own application-specific context.

The following piece of code illustrates how to add
and invoke a rule-based reasoner:

/* declare the prefixes for namespaces */
ContextReasonerManager.registerPrefix("conagnt",
rtmm.camus.vocabulary.contel.Agent.NS);
ContextReasonerManager.registerPrefix("env",
rtmm.camus.vocabulary.contel.Environment.NS);
ContextReasonerManager.registerPrefix("conloc",
rtmm.camus.vocabulary.contel.Location.NS);

/* add a new reasoner providing the rule file */
ContextReasonerManager.addReasoner("Location",
ReasonerType.GENERIC_REASONER, "etc/contel.rules");

/* declare some statements */
sms = new ContextStatement[] {PastLocationDescription,
hasLocation};

/* invoke the reasoner to do reasoning, providing the reasoner
name, the context data name and the required statements */
cdm.invokeReasoning("Location", "Data", sms);

In our middleware system, all reasoners are invoked
through a unified interface. Such APIs make it possible to
add and handle different reasoners as pluggable modules
but, in return, it requires huge effort to come up with a
uniform structure for different reasoning mechanisms.
Currently, we are dealing with 5 different reasoning
mechanisms mostly used in ubiquitous computing
Description Logics, Neural Nets, Bayesian Nets, HTN
Planning, and Fuzzy Logics.)

To provide more help to developers so that they can
concentrate on developing rules or networks for reasoning
and not be burdened with the low-level reasoning engine
details, our middleware infrastructure defines wrappers
for each Reasoner type. For example, a wrapper of Jena
generic rule Reasoner allows the developer to easily add a
new Reasoner just by declaring the rule file name and
some namespace abbreviations.

2.4. Response to Real World Applications

Once the system senses real world correctly, saves

the context in formalized manner and reasons intelligently,
it must provide useful response to the real world to
maximize the user computing experiences. Therefore,
there is a need for an efficient delivery mechanism to
filter out unrelated information and communicate the
relevant contextual information to its respective clients.

The main motivation behind context delivery
services in CAMUS is two fold:
• Provide a discovery and registration mechanism

which can utilize the underlying contextual
information’s syntax as well as semantics in order to
make more intelligent and accurate context service
selection

• Incorporate dynamic and autonomous access-control
mechanisms in the context delivery process to ensure
privacy and overall integrity of the system
Keeping in view the requirements of the context

delivery service and the representation scheme of the
underlying data model for context, semantic web concepts
for matchmaking [11] along with support for dynamic
composition of context-aware services is being developed.

3. CAMUS Middleware Infrastructure

Our middleware architecture (figure 1) provides

support for gathering context information from sensors in
a unified manner, incorporating different reasoning
mechanisms for deducing high-level context, and
delivering appropriate contexts to applications as well as
notifying the applications of context changes [5]. Here we
mention our middleware architecture components, in sync
with the key issues discussed in section 2.

3.1. Feature Extraction Agents

Feature Extraction Agents (FX Agents), or wrappers

of sensors, extract the most descriptive features for
deducing contexts in upper layers, sometimes attached
with their semantic meanings and uncertainties. Then,
Feature - Context mapping layer will perform the
mapping required to convert a given feature into
elementary context using some rules or reasoning
mechanisms. In order to provide a generalized solution,
our middleware infrastructure lets developer define and
incorporate his meta-information for mapping, saved in
the ontology repository. The meta-data relates to devices
(D), sensors (S, including access mechanisms, feature list,
etc.,) Feature - Context Labeling or Mapping (L), as well
as the meta-information about the input, output and
capabilities of pluggable reasoning modules (R).

Figure 1. CAMUS Core Architecture

With the abstraction for sensing agents, the

middleware infrastructure lets developer deploy any type
of sensors in three steps:
1. Provide the native driver for communicating with the

sensor hardware
2. Provide specific algorithms for extracting the most

descriptive features from raw sensor data. Sensor
Fusion can also be implemented at this step. These
two first steps will modify the Feature Extraction
Agent template provided by the Middleware System
to have a new FX Agent for that sensor type.

3. Provide the meta-data describing new Feature
Extraction Agent. This solution enables a dynamic
mechanism for mapping between the real world
information and the virtual world of context
representation. For example, when a new RFID tag is
attached to an object, the developer just needs to
append new information describing this tag (e.g. the
name of the object carrying the tag) to the meta-data

file of the RFID Readers, and no modification of the
sensing modules is needed.

3.2. Context Repository & Query

The Context Repository provides the basic storage

services in a scalable and reliable fashion and contains the
Domain Ontology and Context Information along with
Meta-Information.

Figure 2. Context Repository Structure

Domain Specific Data Model: A ubiquitous

computing system may consist of many subsystems
running on various domains such as home domain, office
domain, university domain, etc. Furthermore, many
ubiquitous systems can collaborate with each other to
build a large pervasive environment. The use of ontology
can help sharing the knowledge about data among
different domains and systems. However, such a
distributed and dynamic environment requires an efficient
mechanism to store and retrieve context data over multi-
domain repository. As CAMUS uses OWL format to
store context data, it maintains a meta-graph to manage
the meta-data about all the domain repositories. Using
OWL format, the Context Repository can be backed by
some kinds of DBMS such as MySQL, or just use text
files if the system needs to run on some resource-
constrained environment. When handling OWL data
using Jena library [12], each database can be considered
as a group of models, where each model is a collection of
contexts. The ontologies defining context data schemas
have hierarchical structure, so each context data model
itself is a sub-graph of the large graph combining all the

ontologies. Consequently, it is feasible to build a meta-
graph of all graphs in a ubiquitous environment. That
meta-graph stores the information about the models of
each domain, names and namespaces of the models, and
especially the contexts provided by each model in a
hierarchical structure. Context data can be retrieved by
RDQL [13] queries. The queries are parsed into list of
condition triples. Then the contexts mentioned in
condition triples are used to search all the models which
can provide those contexts from the meta-graph. After
that, for each concerned model, all the related statements
are extracted using the template statement built from the
condition triples. Jena library allows us to integrate many
statement sets into one model before executing the query.
Because each Context Repository Manager module runs
as a service, it can advertise itself as well as discover
other Repository Manager services. Whenever it
discovers a new repository, it will integrate the meta-
graph of the new repository in its own meta-graph.

3.3. Structure of Reasoning Module

Reasoning Module in CAMUS includes multiple

reasoners which handle the facts present in the repository
as well as to produce composite contexts. The reasoners
can provide the entailed knowledge not formally present
in the repository using various kinds of logics to support
inference. Moreover, since every context in CAMUS has
probability property, many kinds of reasoning over
uncertainty such as Bayesian inference or fuzzy logic can
also be applied. Sample reasoning scenarios using
different types of the above mentioned mechanisms are
described in [5] and [9]. Here we focus on describing the
structure and working of CAMUS Reasoning Module.

Figure 3. Class Diagram of Reasoning Engine

As depicted in figure 3, the
ContextReasonerManager manages all the reasoners in

the system through a unified interface, Context Reasoner.
All the reasoners will implement this interface. The most
common method of a Reasoner is invokeReasoning,
which does reasoning over a provided ContextData, to
infer some statements, or to infer the new contexts
required by an RDQL query.

Any service like Context Aggregator, or Client
Mapping Service, can call the ContextReasonerManager
service to add a new Reasoner, get an existing Reasoner,
and then do reasoning by calling the invokeReasoning() of
the reasoner. Developers just have to compose the rule
sets, and decide the context data which should be used,
and the middleware will take care of all other work from
creating the reasoner to inserting the new inferred data
into the repository.

3.4. Context Delivery & Aggregator Services

In our middleware framework, each context

aggregator (analogous to web service) specifies the
context it provides, by utilizing the concepts defined in
the ontology repository. This standard schema sharing
allows different kinds of entities to be described and
utilized by delivery service to find useful services needed
by the applications, thus, allowing a flexible mechanism
for exchanging descriptive information of various entities.

It is clear that the capabilities of the context
representation scheme can not be exploited to enforce
access control over the information contents. The context
delivery mechanism fills this void by incorporating
dynamic policies at the services level as well as at the
system level on the whole.

The foremost concern is to define access control
policies that can be suitable in a pervasive environment.
The major concerns are: the policies need to be dynamic
in nature; the granularity of control to information needs
to be identified; how to cope with changing policies based
on the context at run-time; how can the clients trust the
system while providing personal information to it for
access and validation. Some of these issues can be
overcome if autonomic access control techniques are
employed in context delivery.

The services (context aggregators) utilize the
registration interface to make their information known to
the applications. Lookup interface enables the
applications to find appropriate matching context
providers. Policies/rules database contains the system
level policies as well as optional aggregator services level
policies and rules defining the requirements or conditions
to access some specific service provided by the context
aware middleware. This process is handled by the access
control module.

The matchmaking module matches the appropriate
service with the client provided the access control policies
are not violated. Further breakdown of the context

delivery module is represented in the figure 4. A further
detail of this module has been cut out because of space
limitation.

Figure 4. Context Delivery Service – Modular Breakdown

3.5. Runtime Composition

Composition of services is basically used in the

workflow management systems such as [14]. The idea is
very powerful and applicable to context-aware ubiquitous
computing services when the context requested by user is
not provided directly by single service but can be
composed by combining several services in a flow. Since
semantic matchmaking is being employed at the delivery
service, we register service along with quantitative and
qualitative semantics of its interface. Quantitative
semantics is related to context service specification i.e.
service name, operations/methods provided by the service
through its exposed interface along with the inputs,
outputs and exceptions of those methods, while
qualitative semantics are dealt with excellence of the
service i.e. its execution time, context freshness,
reliability and availability semantics. An optional
hardware used attribute can be used to show which
hardware was used to gather the elementary context, e.g.
location can be got by using with RFID, iButton, or even
simple WLAN. Once context service is fully described
(both quantitative and qualitative semantics), it can be
then registered with the broker service. E.g. if the client is
interested in user location and it is willing to provide user
URI and expecting Location in terms of GPS location,
then it can be defined roughly as:

Domain (CT) = Location Provider Service
Ontological class of required operation = UserLocation
Ontological class of required input = URI
Ontological class of required output = GPSLocation
Context Freshness < 5 Sec
Hardware Used = RFID || iButton

In this way, the client specifies its requirements in
more expressive way and there are more chances to find
suitable service as compared to simple search based on
keywords.

4. Discussion

The benefits of using unified sensing framework

approach are two fold. Firstly sensor access is unified
through hardware abstraction layer and standardization
which results in easy access for upper layers and masks
sensor heterogeneity. Secondly, the use of features allows
better description of different environment parameters
than raw sensor values and features can be organized,
stored and delivered in an efficient manner. For
permanent storage of context data, OWL data is converted
into relational DBMS by using the Jena framework API.
This has certain performance limitations which made us
believe the database storage schemes especially for OWL
should be investigated along with different efficient query
mechanisms to retrieve stored data. Similarly, providing
different reasoning mechanisms to infer higher level
demands a uniform data structure to incorporate
information required by different reasoning engines.
Applying some data mining and AI techniques into
middleware needs to be considered, e.g. from the
historical information of user location, user activity, the
environment features, combine with user profile, some
data mining algorithms can be used to mine the
association rules which describe user preferences or user
routine. Another example is that we can build the decision
trees to predict future actions of user. Also, incorporating
access control requires a lot of information inflow on
behalf of the applications i.e., the applications are
required to provide some credentials to match the policies.
This process might be slow in case some mobile user just
wants to retrieve general information e.g., weather, light
conditions, humidity, goods available in the market etc
from the context-aware system which are not subject to
privacy constraints. In such scenarios, policies can be
written to grant unhindered access to services that provide
such contextual information. However, there is also a
need to carefully define the data structure to represent
policies and semantics so that the representation scheme
facilitates these mechanisms. Concerns like dynamic
policies, granularity of access control, coping with
runtime police changes and providing certain level of trust
of users can be dealt if autonomic access control
techniques (out of scope of this paper) are employed in
context delivery.

5. Summary

In this paper, important elements that comprise

middleware for context-aware ubiquitous computing have

been discussed. Context sensing, modeling and
representation, context repository and query, pluggable
reasoning modules, aggregators and delivery services, and
runtime composition are all required components for a
comprehensive context-aware middleware solution. The
intermingling of all these components is necessitated to
spotlight a comprehensive solution. Following a
systematic approach makes CAMUS a flexible and
reusable middleware framework.

References

[1] Hong, J. I., et al., “An Infrastructure Approach to Context -
Aware Computing”, HCI Journal, 2001, Vol. 16.
[2] Context Toolkit project, http://www.cs.berkeley.edu/~dey/-
context.html
[3] Guanling Chen and David Kotz., “Solar: An Open Platform
for Context –Aware Mobile Applications”, Proceedings of the
First International Conference on Pervasive Computing
(Pervasive 2002), Switzerland, June, 2002.
[4] Anand Ranganathan, Roy H. Campbell, “A Middleware for
Context -Aware Agents in Ubiquitous Computing
Environments”, ACM/IFIP/USENIX International Middleware
Conference, Brazil, June, 2003.
[5] Hung, N.Q., Shehzad, A., Kiani, S. L., Riaz, M., Lee, S., “A
Unified Middleware Framework for Context Aware Ubiquitous
Computing”, EUC2004, Japan, Aug. 2004.
[6] Managing Care Through the Air,
http://www.spectrum.ieee.org/WEBONLY/publicfeature/dec04/
1204net.html
[7] W3C Web Ontology Working Group, “The Web Ontology
language: OWL”, http://www.w3.org/2001/sw/WebOnt/
[8] Klyne, G., Caroll, J. J., “Resource Description Framework
Abstract Concept and Syntax”, W3C Recommendation, 10 Feb.
2004.
[9] Anjum Shehzad, N. Q. Hung, Kim Anh Pham, Sungyoung
Lee, “Formal Modeling in Context Aware Systems”, Workshop
on Modeling and Retrieval of Context, CEUR, ISSN 613-0073,
Vol-114, 2004.
[10] Korpipaa, P., Koskinen, M., Peltola, J., Makela, S. M.,
Seppanen, T., “Bayesian approach to sensor-based context
awareness”, Personal and Ubiquitous Computing, Vol. 7, Issue 2,
July 2003, pp. 113-124.
[11] Trastour, D., Bartolini, C., Gonzalez-Castillo, J., “A
Semantic Web Approach to Service Description for
Matchmaking of Services”, HP Labs Bristol, HPL-001-183,
2001.
[12] “Jena: A Semantic Web Framework for Java”,
http://jena.sourceforge.net/
[13] Andy Seaborne, “RDQL – A Query language for RDF”,
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
[14] F. Casati, S. Ilnicki, L. J. Jin, V. Krishnamoorthy and M. C.
Shan, “eFlow: a Platform for Developing and Managing
Composite e-Services”, HP Laboratories Palo Alto, HPL-2000-
36, March 2000.

