
Semantic Bridge for Resolving Healthcare Data
Interoperability

Fahad Ahmed Satti
Ubiquitous Computing Lab,

Department of Computer Science &
Engineering, Kyung Hee University

South Korea
fahad.satti@oslab.khu.ac.kr

Wajahat Ali Khan
Ubiquitous Computing Lab,

Department of Computer Science &
Engineering, Kyung Hee University

South Korea
wajahat.alikhan@oslab.khu.ac.kr

Taqdir Ali
Ubiquitous Computing Lab,

Department of Computer Science &
Engineering, Kyung Hee University

South Korea
taqdir.ali@oslab.khu.ac.kr

Jamil Hussain
Ubiquitous Computing Lab,

Department of Computer Science &
Engineering, Kyung Hee University

South Korea
jamil@oslab.khu.ac.kr

Hyeong Won Yu
Department of Surgery,

Seoul National University
Bundang Hospital

South Korea
hyeongwonyu@gmail.com

Seoungae Kim
Ubiquitous Computing Lab,

Department of Computer Science &
Engineering, Kyung Hee University

South Korea
seoungae@oslab.khu.ac.kr

Sungyoung Lee
Ubiquitous Computing Lab,

Department of Computer Science &
Engineering, Kyung Hee University

South Korea
sylee@oslab.khu.ac.kr

Abstract—Data Interoperability is a critical part of achieving
healthcare interoperability. In this paper, we present a novel
methodology for automating the schema matching process at
attribute level, among three non-standard and serialized schemas.
We achieved 71.8% mappings, using a four stage process with
string matching, longest common substring matching using suffix
tree, and ConceptNet lookup.

Index Terms—Healthcare, Interoperability, Schema Matching

I. INTRODUCTION

In the last decade, digitization efforts in healthcare service
delivery have led to the generation of a very large volume
of sensitive and heterogeneous data. This heterogeneity is a
consequence of the plethora of available information systems
and standards for messaging, terminologies, decision support
and others [2]. This has led to a lack of interoperability and co-
ordination between medical service providers and consumers
[1], eventually leading to risks such as erroneous diagnostics,
greater operating cost [3], or non-adherence top treatment
plans by the patients [4]. The problem is compounded due
to the existence of some healthcare information management
systems, which do not utilize any formal standard to build their
schemas. Leading technologies such as Big Data (integrated
storage), Semantic Mapping, and Blockchain(verification) can
be entwined together to build a ubiquitous healthcare platform,
which can not only resolve the data heterogeneity problem but

also provide access to holistic medical data curation services
for large healthcare service delivery platforms.

In building such a platform, we utilized three distinct
schemas (OpenEMR, EMRBots, and a custom HMIS imple-
mentation) to produce over 117 million, synthesized medical
records for 390,000 patients. This heterogeneous data is stored
in Hadoop based Big Data Storage engine, in semi-structured
form. Using Hive, we are able to query and retrieve error-
free results, which are syntactically associated with each other
using patient, medical system, and record identifiers. This
integrated storage, provides the foundation for applying a
novel semantic reconciliation-on-read process for resolving
data interoperability. The reconciliation process, in turn, is
based on the creation and application of a semantic bridge
which provides a link amongst the attribtues of any two
schemas. This many to many mapping of attributes and
schemas, is generated through an offline process. While the
application of the same is an online process, which is delayed
until the user request, for some subset of the data, is received.
In this manner, a semantic bridge can be used to create a
temporary view, which maps and/or transforms the medical
data from one schema to another, without compromising its
integrity or originality.

In this paper, we present the semantic bridge and its current
unsupervised, creation strategy, which produces more than
6,651 maps between 144 attributes in 3 schemas. Using only
the schema information and a four stage process, based on



string matching, longest common subsequence identification
using suffix trees, and ConceptNet relatedness check based on
Numberbatch embeddings [5].

II. MOTIVATION

A. Healthcare Data Interoperability

Interoperability represents the policies and guidelines,
which when implemented, can bridge the gap between systems
and services. Data Interoperability is a part of this ecosystem,
which focuses on resolving the integration, exchange and
consumption of data, while maintaining its context. It requires
schema matching techniques that can transform source data
into understandable and application ready format [9]. This
transformation can be achieved by using a standard based
approach or a mediation based one. Here, the former focuses
on creating a single standard that contains the common and
useful features of various participating standards. While the
latter, creates conversion mechanisms to convert standards into
a form, acceptable by all participants [10]. Linked Data is one
of the well know example of achieving standard based data
interoperability, which uses expert intervention to create links
within and between a collection of dataset. On the other hand,
Semantic Information Layer (SIL) [11] is an example of medi-
ation approach which is based upon automatically linking the
existing semantically enriched attributes. Data interoperability
approaches can enhance healthcare services quality and reduce
its costs by eliminating redundant operations.

B. Data Storage Engines in Healthcare

One of the reasons behind heterogeneity in healthcare data is
the utilization of different types of storage engines. Healthcare
data storage strategies can be categorized into, Relational data
store, Column-Oriented data store, Graph store, Document
stores and Key-Value maps.

1) Relational data store: The most common type of storage
engine used by medical systems, is the relational database
management system. It provides a mechanism for storing data
instances/tuples, which are uniquely identifiable with primary
keys. Each tuple can also contain foreign keys to identify
their relationships, with other instances. This type of data
store is easy to use, however, all records must conform to a
well-defined schema before insertion. As a result, the retrieval
process is relatively fast and guarantees a well-defined result
set. The other data stores, are typically called NoSQL and do
not require strict schema check on insertion. Instead, they use
a schema-on-read strategy for fast insertion and relatively slow
retrievals. Formalization of the final result is dependent on the
reporting system.

2) Column-Oriented data store: Column-Oriented data
stores are very closely related to the relational data stores
in terms of their well-defined schema, however, they are
optimized for storing, and operating on data columns, rather
than rows. This allows, operations on complete columns of
data to be optimized for speed. Medical systems relying
on column-oriented data stores have shown high scalability

and improved performance in comparison with traditional
RDBMS, and provide a viable alternative [6].

3) Graph store: Graph stores, for storage and processing
of medical data have found some acceptance in research
initiatives, such as in [7]. The data generated by these sys-
tems is beneficial due to their less stringent schema, more
express-ability, easier application of semantics and scalable
infrastructure, especially when compared with the relational
model.

4) Document stores: Document stores, provide a NoSQL
data storage engine which does not require any predifined
schema and favors fast insertions and scalability. This is
especially suited for storing documents such as free text based
documents, images, clinical practice guidelines, and others.
The drawback of these storage engines is the relatively slower
read operations, requiring complex, deep searches [8] for
applying a schema on unstructured documents.

5) Key-Value maps: Finally, the most simplest form of
data store is the Key-Value map, which stores completely
unstructured data. Typically key based indexes are used to
somewhat alleviate the slow nature of retrieve operations.
These are not typically used as a storage engine for medical
information management systems. Instead, they can be used in
conjunction with other NoSQL data stores and/or to manage
large streaming data such as from medical IoT devices.

C. Semantic Integration of Relational Databases

Data Integration is a complex operation which requires user
intervention at various stages. Automating some of the most
common tasks, and presenting the knowledge engineer with
empirical backing to similarity matching operations can be
very useful. [12] have provided a very good overview of
the Semantic Data Integration usecases, needs and method-
ologies. The authors have presented an overview of what
an integrated biological store would look like. While the
data processing layers, storage mechanisms and integrating
technologies are very different from our research, the overall
concept of semantic reconciliation-on-read, is similar. The
data integration process presented by the authors relies on
SPARQL queries with a pre-defined mapping for underlying
datastores. W3C has provided R2RML [13] as a standard
for converting relational data (RDB) into resource description
format (RDF) model. Detailed review of the tools supporting
R2RML and other technologies for mapping relational data
to RDF is presented in [14]. As identified by the authors in
this study, R2RML is not an all encompassing standard and
many of the current implementations are restricted by their
support for data sources. Another important factor in these
mappings is that in most cases they are dependent on how well
the knowledge engineer/programmer has defined the mappings
or enriched the database with resource descriptions. In this
presented work, we have automated the pre-processing of the
schema mappings, thereby producing semantic bridges, which
in at-least some cases would only require verification from the
knowledge engineer and reduce their workload.



Fig. 1. Circular Dendrogram of participating schemas(generated via https://app.rawgraphs.io/)



Schema
String 

Matcher
Longest Common 
Substring Matcher

Partial Longest 
Common 

Substring Matcher

ConceptNet
Matcher

Schema Bridge

matched

Yes

No

For all attributes, not belonging to the same schema

Fig. 2. The proposed Schema Matching process

III. METHODOLOGY

The Ubiquitous Healthcare Platform, provides an interop-
erable, NoSQL based, scalable, data storage platform, which
can consume data from various sources and produce a com-
prehensive medical profile of the patient [15]. For prototype
implementation, over 117 million medical records were syn-
thesized. Out of these 8 million records corresponding to
OpenEMR and our custom medical silo schema, for 290,000
patients are based on 40 real cardiovascular patients. Another
109 million records were synthesized from the set of 10,000
patient records synthesized by EMRBOT [16]. The 3 schemas
(KrSiloEMR, EMRBOTs, and OpenEMR), correspond to 7
medical fragments, and altogether 143 attributes. As can be
seen in Fig. 1, the schemas are widely different in terms of
their terminologies and brevity. OpenEMR uses the character
“ ” to split multiple words in some cases and in others it
uses word capitalization. OpenEMR contains many attributes
containing the patient’s demographics details, while EMR-
BOTs and KrSiloEMR have substantially low details. These
and many other problems, necessitate the need to bridge the
gaps between the schema and provide a mechanism for linking
or transforming one schema into another.

For schema matching we have used a four stage process as
shown in Fig. 2. Each stage is applied on a pair of attributes,
whereby the left attribute and the right attribute do no belong
to the same schema.

The details of these steps are described in the following
subsections.

A. String Matcher

In the first stage, we apply a simple, case insensitive,
string matcher, for comparing the two attributes. Each attribute
is first converted into lowercase, followed by removal of
any special characters. If the two attributes match (such
as in the case of Krsiloemr.tblpatient.PatientID and EMR-
BOTS.AdmissionsCorePopulatedTable.patientid) the link be-
tween these two attributes is stored and no further processing
is perfomed on it. In case the attributes do not completely
match, they are processed through the next stages.

B. Longest Common Substring Matcher

In the second stage, we utilize suffix tree method to iden-
tify the Longest Common Substring(LCS) between the two
participating attributes. For suffix tree we use the Concurrent
Tree implementation provided by Google Code, version 2.6.11.
Using the default character based factory we build a suffix
tree with both attributes. The subsequent tree will contains
the common elements of the two attributes. A simple lookup
for the longest substring returns the non-leaf node with the
longest character sequence. We apply a threshold value of
2
3 − LengthattrLeft to check if this substring qualifies as
a subsumption relation or not. The confidence value of this
check is calculated using the equation “(1)”.

1https://mvnrepository.com/artifact/com.googlecode.concurrent-
trees/concurrent-trees/2.6.1



Fig. 3. Partial Longest Common Substring Matching result

Confidence = 1− LengthattrLeft − LengthLCS

LengthattrLeft
(1)

C. Partial Longest Common Substring Matcher

Due to the nature of database schemas and a high possibility
of multiple words existing in each attribute name, it is much
more feasible to do a partial LCS of the attributes. This ensures
that if we are able to split the right attribute into words,
each of those words would be matched with the attribute
left. To achieve this, we use an additional loop over the
words of attribute right, identified using a regular expression,
which splits the attribute string, using case changes, digits,
or any special characters in the text. Then for each word,
we build a suffix tree with the left attribute. For each word
we check if the longest common substring is greater than
2
3 − LengthwordRight. A final check then ensures that atleast
one word in the right attribute has the previous condition as
true. Fig. 3 shows the result of one such matching, whereby
the words “Marital” and “Status” from the right attribute
“PatientMaritalStatus” were matched with the left attribute
“MaritalStatus”.

D. ConceptNet Matcher

A final similarity check between the two attributes is made
using a local copy of the ConceptNet API [5] and the “related-
ness” query. This query uses numberbatch.h5 embeddings to
calculate a score for the relationships between two concepts
and returns the top result. Here, both the left attribute and
the right attribute were split into words before querying Con-
ceptNet. As a result, for each pair of words in each attribute
we were able to compute a relationship. The relationship was
marked as “equal”, if the relatedness weight was greater than
0.9, it was marked as ambigious if the relatedness weight was
greater than 0, and skipped otherwise. A final entry in the
Schema Bridge was added with the average weight of all words
and including the individual matching results as well.

IV. RESULTS

Our prototype implementation of the semantic bridge cre-
ation process, as presented above, is in java, which took 47
mins and 46 seconds to produce 6,651 mappings for 144

attributes (22 for EMRBOTS, 20 for Krsiloemr, and 102 for
OpenEMR), out of a possible 9,204 (2,440 for EMRBOTS,
2,480 for Krsiloemr, 4,284 for OpenEMR). Stage wise match-
ing results are shown in table I. Here, string matching, in
stage 1, provides the most accurate result for only 10 attribute
pairs. Stage 2 has no results, due to the very strict check
of 2/3 similar word length. Stage 3 produces 41 mappings,
which get a secondary check in stage 4. The largest number of
matchings (6,600) were produced in stage 4, using the related
concept match. In this way, we were able to automatically
identify 71.8% of the possible mappings, where atleast some
relationship exists.

TABLE I
STAGEWISE SCHEMA MATCHING RESULTS

Stage Matched Results
1. String Matcher 10
2. Longest Common Substring Matcher 0
3. Partial Longest Common Substring Matcher 41
4. ConceptNet Matcher 6600

V. CONCLUSION AND FUTURE WORK

Semantic Data Integration in the absence of expert inter-
vention is a difficult task. Even with expert intervention, a
general approach would prove to be too tedious, especially in
the presence of new schema generation and schema evolutions.
In this paper, we have proposed a methodology for automating
the schema matching task and producing Schema Bridge at
attribute level to support the knowledge engineer.

In future, we shall look towards integrating UMLS lookup
as an additional stage for producing more domain specific
mappings. We shall also integrate this process with our data
interoperability platform, and test it on patient data.

ACKNOWLEDGMENT

This research was supported by the MSIT(Ministry of
Science and ICT), Korea, under the ITRC(Information
Technology Research Center) support program(IITP-2017-
0-01629) supervised by the IITP(Institute for Informa-
tion & communications Technology Promotion)”and IITP-
2017-0-00655 and NRF-2016K1A3A7A03951968 and NRF-
2019R1A2C2090504.

REFERENCES

[1] L. Samal et al., “Care coordination gaps due to lack of interoperability
in the United States : a qualitative study and literature review,” BMC
Health Serv. Res., pp. 1–8, 2016.

[2] M. L. M. Kiah, A. Haiqi, B. B. Zaidan, and A. A. Zaidan, “Open source
EMR software: Profiling, insights and hands-on analysis,” Comput.
Methods Programs Biomed., vol. 117, no. 2, pp. 360–382, 2014.

[3] K. M. Mcdonald, C. L. Bryce, and M. L. Graber, “The patient is in
: patient involvement strategies for diagnostic error mitigation,” no.
August, pp. 1–7, 2013.

[4] K. B. Haskard Zolnierek and M. R. Dimatteo, “Physician communication
and patient adherence to treatment: A meta-analysis,” Med. Care, vol.
47, no. 8, pp. 826–834, 2009.

[5] R. Speer, J. Chin, and C. Havasi, “ConceptNet 5.5: An Open Multilin-
gual Graph of General Knowledge,” no. Singh 2002, pp. 4444–4451,
2016.



[6] A. Celesti, M. Fazio, A. Romano, A. Bramanti, P. Bramanti, and M.
Villari, “An OAIS-based hospital information system on the cloud:
Analysis of a NoSQL column-oriented approach,” IEEE J. Biomed.
Heal. Informatics, vol. 22, no. 3, pp. 1–7, 2018.

[7] I. Balaur et al., “EpiGeNet: A Graph Database of Interdependencies Be-
tween Genetic and Epigenetic Events in Colorectal Cancer,” J. Comput.
Biol., vol. 24, no. 10, pp. 969–980, 2017.

[8] W. L. Schulz, B. G. Nelson, D. K. Felker, T. J. S. Durant, and R. Torres,
“Evaluation of relational and NoSQL database architectures to manage
genomic annotations,” J. Biomed. Inform., vol. 64, pp. 288–295, 2016.

[9] P. Pagano, L. Candela, and D. Castelli, “Data Interoperability,” Data Sci.
J., vol. 12, no. 0, pp. GRDI19–GRDI25, 2013.

[10] S. A. Renner, J. G. Scarano, and A. S. Rosenthal, “Data interoperability:
Standardization or Mediation,” 1st IEEE metadata Conf., pp. 1–8, 1996.

[11] F. Song, G. Zacharewicz, and D. Chen, “An ontology-driven framework
towards building enterprise semantic information layer,” Adv. Eng.
Informatics, vol. 27, no. 1, pp. 38–50, 2013.

[12] A. C. Sima, K. Stockinger, T. M. de Farias, and M. Gil, “Semantic
Integration and Enrichment of Heterogeneous Biological Databases,”
in Evolutionary Genomics: Statistical and Computational Methods, M.
Anisimova, Ed. New York, NY: Springer New York, 2019, pp. 655–690.

[13] “R2RML: RDB to RDF Mapping Language,” 2012. [Online]. Available:
https://www.w3.org/TR/r2rml/. [Accessed: 05-Nov-2019].

[14] F. Michel, J. Montagnat, and C. Faron-Zucker, “A survey of RDB to RDF
translation approaches and tools,” Informatique, Signaux Et Systèmes,
p. 23, 2014.

[15] F. A. Satti, W. A. Khan, G. Lee, A. M. Khattak, and S. Lee, “Resolving
Data Interoperability in Ubiquitous Health Profile Using Semi-structured
Storage and Processing,” in In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing (SAC’19), 2019, pp. 762–770.

[16] U. Kartoun, M. General, and H. Harvard, “A Methodology to Generate
Virtual Patient Repositories,” CoRR, vol. abs/1608.0, 2016.


