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Abstract— Feature selection is one of the important tasks in 

machine learning. Feature selection task deals with selecting a 

subset of feature from an original feature set. An important 

consideration in feature selection is the usefulness of a feature 

i.e. a set of feature which is selected is neither irrelevant nor 

redundant. Most of the existing algorithms in the domain of 

feature selection are designed to optimize the aforementioned 

objective. In our research we have addressed a third dimension 

of usefulness i.e. cost of the feature. Cost-effectives of a solution 

is most apt in cases where there is an asymmetric cost of data 

acquisition such as medical diagnosis applications. In this 

regard, our research deals with enhancing the existing feature 

selection techniques with a post-processing stage in which cost 

consideration is also accounted for. The resultant solution is 

optimized for both important as well as cost-effective features. 

We have used particle swarm optimization with post processing 

over chronic kidney disease dataset for generating a feature 

subset set which is both salient and cost-effective. 

Keywords— Cost-sensitive Feature Selection, Particle 

Swarm Optimization, Post Processing, Data Classification 

I. INTRODUCTION 

A number of data driven approaches for decision making 

rely on machine learning models. In this regard, supervised 

learning models, arguably, are one of the most successful and 

widely used modeling approaches.  In supervised learning 

framework, a model is learned i.e. inferred from data which 

is capable of producing a mapping between a set of 

independent features and a dependent feature [1].  

Cardinality of the input data i.e. number of independent 

features, highly influence this resultant model built from data. 

It is report that if the original data contains a set of features 

which are irrelevant and redundant than the model may over-

fit. It negatively impacts the model. Therefore, huge array of 

feature selection algorithms are designed to address the issue 

of ‘curse of dimensionality’ [2, 3, 4]. 

Traditionally an important assumption taken in building a 

classification model is the symmetric cost of data acquisition. 

This assumption is not valid in cases such as medical 

diagnosis where there cost of data acquisition is asymmetric 

e.g. variability of economic cost for different medical tests 

[5]. 

Furthermore, cost can be accounted for not only in 

economic terms but also in terms of the degree of availability 

of a certain medical test, risk of exposure to a patient, 

computational cost in terms of data acquisition, etc. [6] 

Hence, the notion of cost adds another important dimension 

to the overall usefulness of a solution i.e. how practical is the 

application? Figure 1. depicts a case in which two subsets, 

subset-1 and subset-2, are generated from an original dataset. 

Both the subsets have equal error rate while they have 

asymmetric cost associated with them. Subset-1 has fewer 

features then subet-2 but subset-2 has relatively less cost than 

the subset 1. As it can be seen, fewer features don’t always 

result in a lower overall cost. This example illustrates a trade-

off situation where no solution is strictly the best and hence 

both the subsets maybe made part of the final solution which 

is presented to the decision maker. Where a preference is pre-

specified then a further refinement can be made to the final 

solution. 



  

 

 

 
Figure 1. A case for an asymmetric feature cost 

 

In order to account for the cost factor, generally there are 

two approaches i.e. design a cost-sensitive classifier or design 

a cost-sensitive feature selection method. In this research, we 

have opted for the latter approach since the former is tightly 

bound to a specific class of classification model such as 

decision trees and forces the decision maker to do the same. 

In case of cost-sensitive feature selection, a decision maker 

can obtain a subset of features which are optimized for both 

label prediction and cost. Thereafter, any existing 

classification model may be used with the obtained feature 

subset. 

 In this research, we enhanced an existing feature 

selection algorithm with a post-processing step such that as it 

becomes a two step-process. In first step, a set of highly 

salient candidate features are obtained, and in the subsequent 

step through cost assignment a final solution is obtained. We 

have used particle swarm optimization (PSO) for generating 

a set of candidate solutions. In PSO, unlike non-evolutionary 

techniques, a set of solutions are simultaneously optimized 

for a given fitness function [7]. Nearest-neighbor classifier is 

used as a fitness function since it is non-parametric and 

makes no assumptions regarding the underlying data 

distribution. 

II. PROPOSED METHODOLOGY 

 In this section, we elaborate our proposed two-stage 

methodology, Independent Multi-Swarm PSO with Post 

Processing (IMSPSO-PP), which leverages multi-swarm 

PSO for cost based feature subset selection and ensemble 

model generation as shown in Figure 2. 

 In the first-stage of the methodology, a set of unique 

solutions are generated through a multi-swarm induced PSO. 

Multi-swarm mechanism provides necessary diversity in the 

resultant solutions in order to process for cost-assignment 

and model creation. It is important to note that, solutions are 

optimized for accuracy i.e. objective 1, at this stage. 

 The second part of the methodology deals with 

evaluating evolved solutions for cost-assignment i.e. 

objective 2, through a post processing mechanism. Once, 

cost assignment takes place, then solution reordering 

initiates based on solutions that satisfy both objective 1 and 

objective 2. Such candidate solutions which are inferior than 

others are eliminated. As mentioned in preceding section, 

cost is a multidimensional notion that can relate to 

economical cost, data accusation cost and computational 

cost of acquiring data for a feature, among others. Hence, 

higher the cost of a candidate solution, lower the desirability 

of that solution. 

In the proposed methodology, both stages can operate 

independent of each other i.e. any evolutionary algorithm 

can be used to generate a set of promising solutions and a 

post-processing mechanism can embed cost-factor 

afterwards. Furthermore, the choice of classification model 

is entirely of the decision maker. In this study, we have 

selected a three-classifier ensemble for both label prediction 

and knowledge consolidation tasks. Label prediction deals 

with providing a predicted label against a test instance, 

whereas, knowledge consolidation integrates rules from a set 

of interpretable models and enables a decision maker to get 

insights into the underlying problem. 

The main strength of the proposed methodology lies in 

generating a set of multiple candidate solutions in parallel 

for cost-aware feature selection.  In this regard, a labelled 

classification dataset is sampled into a set of multiple 

partitions with replacement. The decision for the number of 

partitions is based on the number of computation cores in the 

processing system.    

 
Figure 2. Proposed methodology for PSO-based cost-sensitive feature selection 

 

PSO is a population based technique in which a set of 

candidate solutions are evolved in each iteration. In the 

proposed multi-swarm scheme, an original single-

population swarm is divided into a set of non-overlapping 

sub-swarms. Each swarm is fed a sampled dataset which is 

horizontally partitioned. In this regard, each swarm evolves 

a set of solutions for the specific dataset partition. Since, a 

wrapper based FSS approach is adopted in this study 

therefore, it’d be relatively computationally expensive to 

evaluate a candidate solution as compared to evaluating a 

solution on a subset of data. Furthermore, in the proposed 

scheme, multiple-swarms can run in an independent manner, 



  

 

 

and at the end of the execution, solutions can be combined 

from multiple swarms, hence, providing a holistic view of 

the solution space while incurring computational cost of a 

single run of the PSO algorithm. 

In this regard, there are two key objectives to evolve 

multiple swarms independently: 

• Parallel execution using compute resources 

• Solution diversity using multi-swarm configuration 

Step-1 of the proposed methodology is detailed in 

Algorithm 1. As mentioned in the algorithm, a dataset is 

divided into a set of partitions, on each partition a PSO 

population will optimize solutions in an independent non-

overlapping configuration.  

 

Algorithm 1. Parallel Multi-Swarm PSO 

Input: 

          Dataset: Dset            

Output: 

          ConsolidateSolutions: List <particle, fitness> 

Begin 

1.     mSwarm  Retrieve_Cores () 

2.     dSet  Horizontal_Parition(mSwarm) 

        Parallel |> 

3.      Foreach swarm in mSwarm: 

4.          Encoding (swarm) #Equation 2 

5.          Initializing (swarm) 

6.          Evaluating (swarm, dSet) 

7.          gbest  Locate-leader (swarm)              

8.          While (termination != ‘TRUE’) 

9.                Foreach particle in swarm:   

10.                                current = Position-Update (particle): 

11.                                Assign_Fitness (particle)                   

12.                              IF current.fitness > pbest THEN: 

13.                                   Update (pbest) 

14.                              EndIF 

15.              gbest  Evaluate leader (swarm) 

16.          EndWhile 

18.       EndFor  

19.    Parallel <| 

20.      Solution <particle, fitness>  SolutionConsolidate (mSwarm, k)  

End 

  

    

Step-2 of the proposed methodology is based on subset 

integration and cost assignment.  

 Subset Integration deals with combining all the unique 

feature subsets acquired from multiple swarms. Each swarm 

produces a set of solutions for a given dataset partition. 

Number of solutions are based on the size of a swarm. In this 

study, all the swarms carry equal number of particles.  

Cost Assignment for a feature subset deals with 

averaging cost of each feature in a subset over the total cost 

of all the features, while cost computation of an individual 

feature is given in Eq. (1). 

 

     𝐹𝐶𝑖  =  
𝐸𝑐𝑜𝑠𝑡𝑓𝑖 

𝑡𝑜𝑡𝑀𝑐𝑜𝑠𝑡
+ 

𝐴𝑐𝑜𝑠𝑡𝑓𝑖

𝑡𝑜𝑡𝐴𝑐𝑜𝑠𝑡
+ 

𝑅𝑐𝑜𝑠𝑡𝑓𝑖

𝑡𝑜𝑡𝑅𝑐𝑜𝑠𝑡
                         (1) 

 

Where Ecostfi, Acostfi, and Rcostfi are the feature i’s 

economic cost, availability cost and risk cost, 

respectively. Normalized cost values are assigned to each 

feature. Each feature subset is associated with a cost 

factor which is between 0 and 1, inclusive. Higher the 

value, more would be the cost. 

Model Construction is the last step of the 

methodology. It is based on decision maker’s discretion 

to select a classifier which may serve for either label 

prediction or knowledge consolidation tasks. Figure 3. 

depicts one possible approach for model construction. 

Where “DT” refers to a decision tree model. 

 
Figure 3. Ensemble based model construction for label prediction 

 

 An objective of a prediction model is to given 

insights regarding the underlying problem. In this case 

interpretable machine learning models are generally used. 

Decision tree is one of the popular interpretable machine 

learning models. An ensemble model based on decision trees 

can be constructed, where each decision tree is fed a reduced 

dataset. Each decision tree algorithm constructs a model 

which may be translated into a production rule of the form 

𝐼𝐹 𝝌 𝑇𝐻𝐸𝑁 𝜰, where “𝜒” represent a set of independent 

features, and “𝛶” represent a dependent feature. Figure 4 

depicts one of the configurations for creating an ensemble 

model for knowledge consolidation. In this knowledge 

consolidation approach a set of interpretable models are 

constructed such as shown in Figure 4. Each model is ranked 

based on its predictive accuracy score. Afterwards, rules are 

extracted. Traversing from the root node to one of its leaf 

node results in one conjunctive production rule. Once, rules 

are extracted from all the models, then contradictory and 

redundant rules are filtered out. Remaining rules may be re-

evaluated based on a support-confidence threshold. The 

main intention is to elaborate on different approaches which 

may be utilized by the decision maker for model 



  

 

 

construction approach and a detailed discussion on 

knowledge consolidation process is not within the scope of 

this paper. 

 

 
Figure 4. Ensemble model for knowledge consolidation 

 

III.  EXPERIMENTAION AND RESULTS 

     In this section, we will discuss about the dataset used for 

the experimentation of the proposed methodology. We have 

used chronic kidney disease (CKD) dataset, publicly 

available on UCI repository [8]. The dataset contains 400 

patients record, where 250 patients are diagnosed with 

“ckd”. Furthermore, dataset contains 25 features including 

the class label. Dataset is preprocessed for missing values 

and the continuous values are discretized using. Weka is 

used for executing PSO based feature selection method [9]. 

TABLE I provides details of the CKD dataset. Cost of 

feature is given by C-score using Eq. (1), and Feature score, 

F-Score, using Eq. (2). Symmetric uncertainty is used as a 

univariate measure for scoring each feature, this score is in 

turn used to obtain a percentile-rank of feature in order to 

show its importance in a given dataset. 

 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑐𝑜𝑟𝑒𝑖  =  
(#𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠−𝑅𝑎𝑛𝑘𝑖)

#𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠
                               (2) 

 
Table 1. Chronic Kidney Disease dataset description 

FID Feature Name Data Type F- Score C-Score 

1 Age Numeric 0.20 0.00 

2 Blood Pressure (mm/Hg) Number 0.06 0.01 

3 Specific Gravity Nominal 0.89 0.01 

4 Albumin Nominal 0.79 0.08 

5 Sugar Nominal 0.42 0.06 

6 Red Blood Cells Binary 0.42 0.11 

7 Pus Cells Binary 0.59 0.09 

8 Pus Cells Clumps Binary 0.41 0.09 

9 Bacteria Binary 0.24 0.13 

10 Blood Glucose Random Numeric 0.40 0.11 

11 Blood Urea Numeric 0.16 0.09 

12 Serum Creatinine Numeric 0.06 0.09 

13 Sodium Numeric 0.06 0.02 

14 Potassium Numeric 0.08 0.15 

15 Hemoglobin Numeric 0.73 0.01 

16 Packed Cell Volume Nominal 0.59 0.01 

17 White Blood Cell Count Numeric 0.16 0.09 

18 Red Blood Cell Count Numeric 0.87 0.09 

19 Hypertension Binary 0.88 0.01 

20 Diabetes Mellitus Binary 0.81 0.08 

21 CAD Binary 0.36 0.15 

22 Appetite Nominal 0.71 0.01 

23 Pedal Edema Nominal 0.65 0.01 

24 Anemia Nominal 0.54 0.09 

 

    In Figure 5, blue line represents error rate while orange 

line represents accumulated cost of a solution. For example, 

when population size is 5, then total number of features 

elected are 14, which incur error rate of 2.75 and total cost 

of 0.96. Based on preliminary experiments, as shown in 

Figure 5, we have selected population size of 15.  Selected 

features are: 3,6,7,9,16,19,20,22,23,24.  

 

 
Figure 5. Effects of population size on error rate and solution cost 

 

     We have divided our original dataset into 4 sub-partitions 

with replacement. Each partition of 100 records is fed to a 

PSO population of 15 particles. Figure 6 depicts results of 

our reduced dataset. As it can be see that our proposed 

method has reduced the overall cost of the final solution 



  

 

 

from 2.6 to 0.55, while it also managed to reduce the overall 

error rate as well. Hence, it demonstrates that embedding a 

post-processing step for cost assignment selects features 

which are optimized not only for reducing the error rate but 

also yields a low-cost solution, hence, enhancing the overall 

applicability of the application as well. 

 

 
Figure 6. Original dataset vs reduced dataset 

IV. CONCLUSION 

Cost-sensitive feature selection has recently gained a lot 

of traction from the machine learning community. Since, in 

a number of application domains the traditional assumption 

of asymmetric cost is not valid. Therefore, enhanced feature 

selection techniques are proposed in order to account for the 

cost factor as well. In this research we have proposed a 

multi-swarm PSO methodology for cost-sensitive feature 

selection. This research demonstrates the effectiveness of 

our methodology in achieving solutions which are both 

efficient in terms of error rate and cost-effective.  

This research can be advanced in a number of directions, 

such as the dominance relations among solutions can be 

extracted which would show the decision trade-off and 

therefore produce multiple solutions instead of a single 

solution. Another dimension of this research is to investigate 

in more detail the knowledge consolidation process in which 

multiple interpretable models are integrated in the form of 

production rules in order to extract non-trivial patterns from 

the dataset. 
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