
Incorporating Semantics-based Search and Policy-based Access Control
Mechanism in Context Service Delivery

Maria Riaz, Saad Liaquat Kiani, Sungyoung Lee, Young-Koo Lee

Real Time & Multimedia Lab, Kyung Hee University, Giheung, Yongin, Gyeonggi-Do, 449-701,
 South Korea

{Maria, Saad, Sylee}@oslab.khu.ac.kr, Yklee@.khu.ac.kr

Abstract

 Context aware computing utilizes the information

embedded in physical and computational environments to
provide services adaptive to users’ preferences. As these
services become more pervasive, the need for a service
delivery mechanism arises. Due to the diversity,
magnitude and nature of the contextual information, a
context-based service delivery mechanism is required
which can not only identify the most appropriately
matching services for the interested clients but can also
ensure that the contextual information is not compromised
by providing services to illicit consumers. This paper
focuses on the issues of service delivery in pervasive
computing environments where services and clients are
vast, varied and completely decoupled from each other.
Semantics-based attributes are used for service
registration and lookup. Privacy is maintained by
incorporating policy based access control mechanisms in
the service delivery modules.1

1. Introduction

The physical space around us is increasingly getting
filled with computing elements and smart artifacts that
contain a microprocessor. This trend will only pace up in
time with more appliances and gadgets appearing
embedded with computing and networking capabilities.
Ubiquitous computing [1] aims at seamlessly integrating
the physical and computational world to enhance the user
experience by providing services attentive to a user’s
preferences in a given context. With the plethora of
information gathered from the physical and computational
environment, there is a need for an efficient delivery
mechanism to filter out unrelated information and
communicate the relevant contextual information to its
respective clients. Context delivery is the final step in the
context awareness process starting from gathering raw

1 This research was supported by the MIC (Ministry of Information and

Communication), Korea, under the ITRC (Information Technology
Research Center) support program supervised by the IITA (Institute of
Information Technology Assessment)

data from environment and logical sensors, feature
extraction, context synthesis and reasoning, and finally
delivering context to the interested client or application. It
facilitates the context-based interactions by relating the
desired contextual information with the interested context
consumer. The clients of a context delivery system include
context producers (context aware middleware), that
produce and advertise the existence of context aware
services; and context consumers (context aware
applications), that require these services to emanate
intelligent and adaptive behavior.

In a generic service provider / consumer environment,
the service is published, discovered based on syntactic
parameters i.e., the consumer can lookup the service solely
basing on syntax queries. In case the service provider and
consumer do not use the same syntax, the desired service
could not be provided even if it exists. Similarly, the
service interfaces are static and known in advance by the
interacting clients. Security and access control models for
information are also well understood in case of static
service provider and consumer interactions. In a context
aware system, a vast set of heterogeneous context services
and clients are present. New type of applications and
contextual information might be added to the system at
runtime which should be incorporated in the system
without requiring an update in the service interface
towards the existing client applications. Similarly, only
syntax-based queries might not be able to identify the
desired service since the syntactic representations of the
‘same concept’ might be different at the client and the
service. Finally, the context aware system can easily
become invasive from pervasive if access to information is
not carefully monitored. A pervasive context aware system
senses information from the physical and computational
environment and infers useful contextual situations in a
user-centric manner. This information, more often than
not, is very personal to the user and if available to an
unauthorized person can be a serious intrusion in the
user’s privacy and security. Access control to information
is as critical as it is challenging in context aware
computing.

In order to meet the additional challenges posed by the
peculiar nature of context aware systems, traditional
service discovery mechanisms are not enough. We identify

two main tasks for service delivery in context aware
systems:

• To provide a discovery and registration
mechanism which can utilize the underlying
contextual information’s syntax as well as
semantics in order to make more intelligent and
accurate matchmaking decisions between the
clients and services

• To incorporate dynamic and autonomous access-
control mechanisms in the context delivery
process to ensure privacy and overall integrity of
the system

We propose a context-based service delivery
mechanism which affords these functionalities in a
context aware environment. The proposed approach is
implemented by extending the existing service discovery
mechanism of Jini [2] with semantics based parameter
specification and search along with access control
provision over the available services basing on the
requesting client’s context. Related work is discussed in
section 2. Section 3 presents the overview of the
underlying context representation mechanism in our
framework. Section 4 presents the context delivery
architecture proposed by the authors, and discusses the
application of our idea with the help of an example
scenario. We conclude our discussion in section 5.

2. Related Work

Context delivery is the final step in the context

awareness process. In the existing solutions for context
awareness, a variety of approaches have been tried to
enable coordination among various parties in a distributed
manner. A number of middleware solutions use CORBA
based coordination and communication [3], [4] which
provides dynamic resource discovery but due to its hard-
state registration and lack of support for leasing
mechanism, the system behaves reactively instead of
proactively to the changing system dynamics. Moreover,
the context delivery mechanism only deals with the
syntactic comparison and does not provide semantic
matching capability. Web services and UDDI based
approaches [5] provide a platform-independent
mechanism for service description, discovery and usage
but it limits the flexibility and expressiveness in the
service descriptions to simple attributes URL and string
comparisons. Currently, efforts are underway to enable
semantic matchmaking capabilities in the UDDI
repository for web services [6] [7]. In [8], the authors give
architecture and implementation regarding ontology based
service discovery. They provide the degree of matching
basing on whether the service is an exact, partial or no
match. While semantic matchmaking enables support for
incomplete or semi-structured information, it does not
provide access control over the contextual information.

Traditionally RBAC [9] is used in large scale
organizations for scalability and managing complexity.
However, it can not enforce fine-grained access control in
a context aware environment where the roles are not
predefined and the access permissions and constraints are
dynamic. Recently, the focus has been given to provide
specific mechanisms for handling access control in context
aware environments. In [10], the RBAC framework is
extended to apply constraints over the role-permission
relationship. It allows specification of very fine-grained,
flexible, content and time-based access control policies but
this approach tightly couples identity/role of client users
with their permissions. In [11], two types of monitoring
agents keep track of the users’ and resources’ context
respectively and dynamically modify the user-role and
resource-permission relationship with the changing
contextual situation. However, a mechanism is required to
ensure that the consistency is not lost if the user’s role is
changed during a session or transition. In [12], access
control is maintained basing on the current context of the
user. This mechanism is good for closed environments
such as a meeting or office scenario. However, a user can
gain certain privileges by merely entering a specific
context, which might not always be desirable.

In this paper, a service delivery mechanism is discussed
which enables semantics based discovery and access
control in a context aware environments. Our approach
differs from the conventional policy-based access control
mechanism in that the policies are dynamic and change
with the changing system and user’s context. This enables
the system to enforce access control basing on the current
situation. The details are given in section 4.

3. Context Representation in the Framework

Context delivery services, presented in this paper, are

built on top of a middleware framework developed by the
authors [13]. We represent contextual information using
Ontologies [14], which not only allows representation of
available contextual information, but also facilitates
expressing relationships between different concepts. They
enable sharing of similar understanding between various
entities in a context aware system. Since, ubiquitous
computing environment is characterized by various
domains e.g. home, office, university etc; ontology can
play a useful role in sharing the domain knowledge of a
particular environment.

OWL is a knowledge representation language and has
explicit semantics associated with the knowledge. It can be
utilized to associate semantic attributes with the context
provisioning services at the time of service registration.
This overcomes the problems which arise when the clients
and services use different syntax for same semantic
concepts. The context delivery mechanism utilizes the
underlying ontologies to recognize the semantics

associated with the contextual information. For example,
from the location ontologies, we can see the Home is a
type of IndoorPlace which is a type of Place. This
organization helps in identifying the concepts associated
with the information and helps in service matching.
Figure 1 shows the main context categories and few
domain concepts of our context model.

The Semantic Web as a whole is largely conceived as a
completely open system, in which everything is published
for everyone to see [15]. While the context representation
scheme enables semantics-based matching of services, it
can not be exploited to enforce access control over the
information contents. The context delivery mechanism
fills this void by incorporating dynamic context-based
policies at the services level as well as at the system level
on the whole.

Figure 1. Basic categorization and some domain
concepts

4. Context Delivery Services

The context delivery services are present at the top

most layer of our framework as shown in figure 2. In the
framework, Feature Extraction process gathers
environmental data and converts it into standardized
features. Ontology Repository contains the static
ontologies and runtime context data in the system.
Context Aggregators utilize various Reasoning Modules
to form composite or high-level context from the simple
contextual information. Details of each module can be
found in [13].

Context Delivery Services provide discovery and
lookup functionality to locate appropriate aggregator
services and deliver them to the client applications in

accordance with the access control policies. Context
aggregators register with the registration service to
announce information about the context they can provide.
This is done by utilizing the concepts defined in the
ontology repository. Applications and agents query the
registration service for the context of their interest. The
registration service, upon finding the appropriate context
providers/aggregators, returns their handles to the clients.

Figure 2. Services in context aware framework

The presence of context delivery services at the user
interface level makes them a logical choice for the
implementation of access control mechanisms.

4.1. Architecture

The major concerns, in order to define an access control
mechanism suitable for pervasive environments, are:
policies need to be dynamic in nature; the granularity of
control to information needs to be identified; need to cope
with changing policies basing on the context at run-time;
minimum information inflow to operate and interact with
the system in a secure manner.

Figure 3. Service delivery architecture

Some of these issues discussed above can be overcome
if autonomic access control techniques are employed in
conjunction with policies whose applicability can be
determined by the current context. The architecture for our
context delivery services is shown in figure 3.

Service Registration Module contains the basic
functionality of the Jini lookup service. It is the service
registry for all the available context aggregator services in
the system. The main function of this module is to provide
service registration, lookup, event management, and
leasing management. Event mechanism enables proactive
service discovery notifications, and leasing enables soft
state registration and filtering out of stale or unavailable
services. Context services and context clients can both
locate the service registration module using either unicast
or multicast messages. A service registers by specifying a
remote reference to the service handle and its semantic
attributes basing on the contextual information it provides.
The attributes can be service name, type, location,
contextual information provided by the service, semantic
structure of the information. Other functional attributes
can also be associated with the services to make the
search more specific. When a client wants to lookup the
service, it provides a subset of these attributes and the
service which fulfills the search criteria is matched with
the lookup request.

Semantic Lookup Engine incorporates matchmaking
capabilities to enable service discovery based on the
semantic attributes provided in service registration and
lookup requests. It utilizes the underlying structure and
ontologies of the context data to come up with the most
appropriate set of context aggregators to fulfill the
applications’ contextual requirements. Ontology DB
contains the domain specific categorization of the
contextual information. This helps in locating the services
that provide the semantic information the client is looking
for, even when the syntactic representation of the
information at the client and service is different. For
example, if a client requests a Temperature service, and
the system contains a Weather service, the semantics will
help identify that Temperature is a specialization of
Weather information. Similarly the request can be
matched to an Environment service since Temperature is
an attribute of the environment. Once the services are
matched according to client’s request, the result is given
to the Policy Evaluator to compute the associated access
constraints.

Policy DB contains the system level policies as well as
optional aggregator (context provider) level policies,
defining the requirements/conditions to access a specific
service provided by the context aware system. The
policies can be specified by the administrator or service
provider and can be updated, modified with changing
context.

Policy Evaluator module finds the policies that apply
to a specific service in a given context. The function of
the policy evaluator can be either proactive or on-demand.
In case of proactive behavior, whenever the context
changes, evaluator computes the corresponding policy that
is now applicable to a service. This is useful if there are

many clients which lookup the context services. In case
the search queries are not very frequent, on-demand
evaluation can be used which computes current applicable
policy associated with a service at the arrival of client’s
request.

Interactive Access Control Module (IACM) interacts
with the context clients to obtain credentials required to
access a specific service or set of services with associated
policies. IACM implements the following operations,
discussed in [16], to help in the interactive access control
process:

• Deduction: Given a defined policy and a set of
credentials provided by the client, it is decided
whether to grant the access or not. It checks if a
request for access can be granted or not.

• Abduction: Given a defined policy and a request
to access some resource or service, it is decided
what minimum credentials are required so that
the given request can be granted. This process is
specifically useful in context aware environments
where the client might not know what credentials
are needed to access a specific service in
advance. In that case, IACM will request the
client to provide the missing credentials and if the
client provides valid credentials, the request is
granted, else denied.

• Induction: Induction utilizes a heuristic function
along with some positive examples of scenarios
in which the request should be granted and some
negative examples of scenarios where the request
should be denied. Basing on this information, the
induction process tries to identify the policy that
satisfies the validity of the granted requests. The
induction process is useful in the case where a
single static policy can not be defined. This is
true for context aware systems since the context
changes at run-time, so should the policy to
incorporate the new situation.

If the client provides some credentials in the service
lookup request, Deduction process is used to evaluate
whether the credentials satisfy the policy requirements. If
the request can not be granted with the provided
credentials, or if no credentials were provided at all,
Abduction process is used to compute the missing
credentials. If the client can provide the missing
credentials, the request is granted and the services are
made available, else the requested service is not provided
to the client. Induction is used when no clear policy can be
computed by the Policy Evaluator according to the given
contextual situation. The results of induction process are
reflected in the Policy DB as a positive or negative
example for future interactions. In case the user wants to
access basic services that do not require any access
control, the request is simply granted by returning the list

of most appropriately matched services found by the
Semantic Lookup Engine.

When a decision to allow access to a certain resource
has to be evaluated, the system first checks the current
context of the requesting user and the system itself.
Basing on the context information, the system evaluates
which policy is applicable in the given scenario. Once the
current system policy has been identified, the service
access request can be evaluated.

In the existing approaches for access control, the
policies are mostly static which can not be modified at
run-time to incorporate changing system privacy
requirements in a pervasive environment. In [17], the
authors extend the existing access control model by
incorporating roles and delegation mechanism but they
only focus on controlling access to devices such as
printers and do not define access control over information
which is more critical in a pervasive environment. In [18],
the authors argue that the access control should be at the
information level since the major concern is to maintain
the privacy of the contextual information. They provide
architecture to maintain access control in a distributed
fashion. However, the access control mechanism is not
interactive and autonomous. By utilizing the context-
based policy selection and the three access control
operations defined above, a dynamic and interactive
access control mechanism can be put to effect.

4.2. An Example Scenario

The proposed approach can be easily understood by
considering a common scenario that can arise in a
ubiquitous computing environment, a market place. Take
the example of a user who enters a market place to buy
some goods. Context aware components present in the
market environment can communicate with the user’s
handheld device to retrieve the list of goods the user needs
to buy. Since any person can enter a market place, the user
is given the default credentials of ‘Customer’, which has
limited access privileges.

According to the policy specification, a Customer can
access services providing information of the available
products in the market place but it can not access the
accounting and inventory records. The user can
conveniently find the goods it requires, check their
quantity and price information, pay the bills and
accomplish his task. Since the credentials required for this
interaction were those of a Customer, which were
assigned to the user by default, the user does not need to
provide any additional information for utilizing the
products-related services.

Now consider the case when the user tries to locate the
inventory services. The system will find the matching
services and compute the policy associated with them,
which in this case will be to allow access only to a

‘Manager’. Since the credentials provided by the user
(default credentials, Customer) do not match the policy,
the system will utilize Abduction mechanism to compute
the minimum required credentials for service access and
prompt the user. If the user was indeed the Manager, he
will be able to provide the missing credentials and the
services will be made available to him/her. In case the user
can not prove to be the Manager, he will be denied access
to the inventory records and accounting services. This
scenario is depicted in figure 4.

Figure 4. A marketplace scenario

If the user is new to this market place and he doesn’t
know the exact names of the products he/she is looking
for, the semantics based search will enable the user to
locate the most appropriately matching services existing in
a place new to the user.

Now consider the case when the marketplace closes at
night. According to the policy specification, during day
time, the default credential for a person entering the
market was Customer. Since the contextual information
has changed, i.e., the market is now closed, the policy
related to assigning default credential to the user will also
be changed and any user entering now will be assigned the
‘Intruder’ credentials. If no exact policy is defined for the
detection of intrusion, previous examples can be used to
determine what course of action needs to be taken through
the Induction mechanism. For instance if the last time an
intruder was detected, system generated an alarm, then this
time again the alarm service will be activated.

For the implementation of the proposed approach, we
have extended the service delivery mechanism of Jini. The
policies are specified using a java-based policy
specification platform. The access control functions are
light weight and the algorithm is clear and simple so the
overhead caused by enhancing the discovery process is
minimized.

5. Conclusion

In this paper, we have provided semantics-based service
matching and dynamic policy-based access control
mechanisms to improve the service search and lookup
functionality and provide privacy over sensitive
information and services. The result is a comprehensive

delivery mechanism with effective matchmaking
capabilities and reasonable privacy. As a specific case,
Jini Network Technology’s discovery and registration
mechanism is enhanced to incorporate interactive access
control and semantics-based search mechanism.

Incorporating access control requires additional
information inflow on behalf of the applications i.e., the
applications are required to provide some credentials to
match the policies. This process might be slow in case
some mobile user just wants to retrieve general
information e.g., weather, light conditions, humidity,
goods available in the market etc, from the context aware
system which is not subjected to privacy constraints. In
such scenarios, policies can be written to grant unhindered
access to services that provide such contextual
information. Similarly, incorporating ontologies and
semantics in service search poses additional computation
burden but given the better hit rate of semantics based
matching and high computational capabilities of today’s
computers, it is not a major concern. OWL is used to
define semantics for the information content of the
middleware. For access control, various information
description languages such as Policy Description
Language, XML Access Control Language [19] are
present. Currently survey is being done to find the most
suitable description language for our purpose.

References

[1] Weiser, M., “The Computer for the 21st Century”, Scientific

America, Sept. 1991, pp. 94-104; reprinted in IEEE Pervasive
Computing, 2002, pp. 19-25.

[2] Sun Microsystems, Inc.: JiniTM Architecture specification.
http://www.sun.com/jini/specs/

[3] Román, M., et al., “Gaia: A Middleware Infrastructure to
Enable Active Spaces”, IEEE Pervasive Computing, Oct-Dec
2002, pp. 74-83.

[4] Yau, S. S., et al., “Reconfigurable Context-Sensitive
Middleware for Pervasive Computing”, IEEE Pervasive
Computing, joint special issue with IEEE Personal
Communications, 1(3), July-September 2002, pp.33-40.

[5] Keidl, M., Kemper, A., “Towards Context Aware Adaptable
Web Services”, Proceedings of the 13th World Wide Web
Conference (WWW), New York, USA, May 17-22, 2004, pp.
55-65.

[6] Sheshagirim, M., Sadeh, N. M., Gandon, F., “Using
Semantic Web Services for Context-Aware Mobile

Applications”, MobiSys 2004 Workshop on Context
Awareness, Massachusetts, USA, Jun. 2004.

[7] Pokraev, S., Koolwaaij, J., Wibbels, M, “Extending UDDI
with context-aware features based on semantic service
descriptions”, International Conference on Web Services
(ICWS), 2003

[8] Broens, T., Pokraev, S., Sinderen, M., Koolwaaij, J., Costa, P.
D., “Context-aware, ontology-based, service discovery”,
EUSAI 2004, Springer, 2004, pp. 72–83.

[9] Giuri, L., Iglio, P., “Role templates for content-based access
control”, Proceedings of the Second ACM Role-Based Access
Control Workshop, November 1997

[10] Tzelepi, S. K., Koukopoulos, D. K., Pangalos, G., “A
flexible Content and context-based Access Control Model for
Multimedia Medical Image Database Systems”, ACM Special
Interest Group on Multimedia (SIGMM), 2001

[11] Zhang, G., Parashar, M., “Context-aware Dynamic Access
Control for Pervasive Applications”, Fourth International
Workshop on Grid Computing, Phoenix, Arizona, November
17 - 17, 2003, pp. 101.

[12] Corradi, A., Montanari, R., Tibaldi, D., “Context-based
Access Control for Ubiquitous Service Provisioning”, 28th
Annual International Computer Software and Applications
Conference (COMPSAC'04), September 28 - 30, 2004, pp
444-451.

[13] Ngo, H.Q., Shehzad, A., Kiani, S.L., Riaz, M., Lee, S.Y.,
“Developing Context-Aware Ubiquitous Computing Systems
with a Unified Middleware Framework”, Proceedings of
Embedded and Ubiquitous Computing: EUC 2004, LNCS
Volume 3207, Springer-Verlag 2004, pp. 672 – 681.

[14] W3C Web Ontology Working Group: The Web Ontology
language: OWL. http://www.w3.org/2001/sw/WebOnt/

[15] Ranganathan, A., McGrath, R. E., Campbell, R. H.,
Mickunas, M. D., “Use of Ontologies in a Pervasive
Computing Environment”, The Knowledge Engineering
Review, vol. 18, no.3, Cambridge University Press, 2004, pp.
209-220.

[16] Koshutanski, H., Massacci, F., “Deduction, Abduction and
Induction, the Reasoning Services for Access Control in
Autonomic Communication”, proceedings of the 1st IFIP TC6
WG6.6 International Workshop on Autonomic
Communication (WAC 2004), Berlin, Germany. Springer,
October 2004.

[17] Kagal, T., Finin, L., Josh, A., “Trust-Based Security in
Pervasive Computing Environments”, IEEE Computer, Dec.
2001, pp. 154–157.

[18] Hengartner, U., Steenkiste, P., “Acccess Control to
Information in Pervasive Computing Environments”, 9th
Workshop on Hot Topics in Operating Systems (HotOS IX),
2003.

[19] http://xml.coverpages.org/xacl.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 2400
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 10.00000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 2400
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 10.00000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 10.00000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [4000 4000]
 /PageSize [612.000 792.000]
>> setpagedevice

