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Abstract—The emergence of convolutional neural network
(CNN) has enabled facial expression recognition to accomplish
significant outcomes nowadays. However, while existing multi-
stream networks are subject to costly computation, the attention-
embedded approaches do not involve multiple levels of semantic
context in the predefined CNN. Based on the observation that
emotions via a person’s face are fusion of various muscular
modalities, relying upon the outputs and corresponding atten-
tional features of the deepest layer in the CNN is insufficient
due to loss of informative details through multiple sub-sampling
stages. Therefore, this paper introduces a CNN with densely
backward attention to leverage the aggregation of channel-wise
attention at multi-level features in a backbone network for reach-
ing high recognition performance with cost-effective resource
consumption. Particularly, cross-channel semantic information
in high-level features are exploited densely to recalibrate fine-
grained details in low-level versions. Then, a step of multi-level
aggregation is further executed for thorougly involving spatial
representations of important facial modalities. As a consequence,
the proposed approach gains highest mean class accuracy of
79.37% on RAF-DB, which is competitive with the state-of-the-
arts.

Index Terms—facial expression recognition, convolutional neu-
ral network, densely backward attention

I. INTRODUCTION

Recently, extraordinary advancement of computing re-
sources and visual data regarding both quantity and quality
has facilitated deep learning technique to be widely applied
into numerous areas, especially computer vision. To this end,
Convolutional Neural Network (CNN) [1]–[4], a well-known
deep learning architecture, has attracted a great number of
researchers thanks to its impressive performance enhancement
in different recognition-based issues, such as human activity
recognition [5], semantic scene understanding [6], [7], disease
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progression identification [8], and especially facial expression
recognition (FER) [9].

In fact, FER has long been an active research field due
to its diverse applications related to human-computer interac-
tions [10]. Nowadays, with an increasing number of images
collected from laboratory [11] and the wild [12], the power
of CNN is exhaustively exploited in this image classification-
related domain, of which further achievements are significantly
accomplished. Particularly, there are three major CNN-based
approaches proposed in the literature of FER: (i) ensemble of
multiple deep networks [13]–[15]; (ii) algorithms of special-
ized objective function or statistical modules [12], [16], [17]
attached to a conventional CNN; and (iii) attention mechanism
embedded to pretrained CNNs [18], [19].

Since emotions via a person’s face are represented by the
combination of various muscular modalities (e.g., shape of
eyes, eyebrow, nose, mouth, facial wrinkle, to name a few),
several researches as shown in the first group aggregated multi-
ple deep networks to express potentially facial features as well
as contextual information for high recognition performance.
In concrete, the authors in [13] took into account capsule,
facial-attribute, and holistic-feature networks for coordinating
spatial details with deep context smoothly throughout the
whole architecture. Meanwhile, MRE-CNN [14] firstly divided
the original input into multiple regions of interest based
on predefined facial landmarks, then fed those patches into
different VGG-16 [1] models for ensemble learning. Another
noticeable architecture, called ResiDen [15], is the mixture
of two well-known concepts in deep learning-based computer
vision, i.e., residual connections [2] and dense blocks [3] in a
single network. Obviously, expensive computation is the major
limitation of these approaches. Hence, instead of involving
additional sub-networks, methods in the second group mainly
introduce locality preserving loss [12] or designated cluster
loss [16] to minimize intra-category variation while maximize
inter-category discrimination. Recently, SPDNet [17] offered
specialized modules of covariance matrices for spatiotemporal
pooling to combat distortion of facial landmarks during the
learning process. However, the utilization of these objective
functions or statistical modules sometimes results in trivial
performance since certain discriminative features might not978-1-7281-5453-4/20/$31.00 ©2020 IEEE
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Fig. 1. Architecture of the proposed DBA-Net for facial expression recognition. Note that ‘Conv. Block’ and ‘Att. Ext.’ represent block of multiple convolutional
layers and Attentional Features Extractor. Besides that, ‘1x1 Conv.’ and ‘Global Pool’ stand for the convolutional layer with kernel size of 1×1 and Average
Global Pooling layer, respectively. Color view is recommended for the best visualization.

be focused properly. Accordingly, in order to express essential
features extracted by trainable layers, attention scheme is of
great interest in the third group. For instance, ACNN [18]
introduced patch- and global-based attention networks to re-
calibrate acquired feature responses at local regions and image
level, respectively. On the other hand, FERAtt [19] involved an
attention module with encoder-decoder structure to effectively
reconstruct facial information from the output of a CNN-
based feature extractor for further classification step. It can
be realized that the attention mechanism is only applied to
high-level feature maps in these techniques.

In brief, existing multi-stream networks are subject to costly
computation while attention-embedded models do not involve
multiple levels of semantic context in a predefined CNN for
FER. As aforementioned, the output emotion is represented
by the fusion of different muscular modalities, which are
exhaustively acquired at multiple levels by a CNN. Therefore,
manifold sub-sampling stages along feedforward pass of the
CNN leads to the loss of certain spatial correlations between
several facial tissues, which are hardly encoded in channel
dimension. Consequently, it is hypothesized that only relying
upon the outputs and corresponding attentional features of the
deepest layer for the classifier is insufficient.

From such observations, this paper introduces a CNN with
Densely Backward Attention, namely DBA-Net, to leverage
the aggregation of depth-wise attention at multi-level features
in a pretrained CNN for attaining high recognition perfor-
mance with cost-effective resource consumption. In particular,
according to the fact that coarser and deeper feature maps hold
much more informative context along the depth dimension
than the finer and shallower ones do, we opt for conducting the

impact of such channel-wise semantic information on the finer-
grained features by the attention blocks (inspired from [4])
in backward manner. Moreover, for the purpose of smoothly
coordinating the finely-patterned (low-level) and semantically-
rich (high-level) features, a dense re-calibration procedure is
taken into account. As a result, this forms into a light-weight
stream of densely backward attention (DBA) for thoroughly
involving spatial representations of important facial modalities,
which are densely refined by semantic context of higher-level
features beforehand. Apparently, such effective aggregation
scheme of various semantic information from the multi-level
feature maps in a CNN is the principal key for recognizing
corresponding expression accurately. In order to show the
effectiveness of the proposed approach, RAF-DB dataset [12]
is utilized for the evaluation, of which the experimental results
in terms of mean class accuracy (sum of diagonal elements in
a confusion matrix) are competitive with the state-of-the-arts.

II. METHODOLOGY

This section delivers details of the proposed DBA-Net, with
corresponding demonstration in Fig. 1, for FER as follows. We
firstly elaborate the overall architecture wherein a mechanism
of densely backward-attention attached to a pretrained CNN.
Then, an in-depth description of the Attentional Features
Extractor (brown module in Fig. 1) is provided. Finally, the
proposed attention-based aggregation in dense manner for the
improvement of prediction performance is delivered.

A. Overall Architecture

Generally, the proposed architecture consists of two parts,
i.e., a backbone CNN pretrained with ImageNet [20] and the
associated light-weight stream of DBA. As correspondingly
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illustrated in Fig. 1, convolution blocks in the dashed box
represent the fundamental components of the backbone CNN
while the remaining stands for the attention-embedded stream
of aggregating multi-scale information for the recognition of
facial emotion.

We apply different base CNNs comprising VGG [1],
ResNet [2], and DenseNet [3] to show the flexibility of the
proposed attention-embedded stream with respect to different
capacities of feature representation. Typically, in these classi-
fication networks, layers in each convolution block learn and
perform acquired features at a specific scale corresponding
to a semantic level. For instance, both ResNet and DenseNet
consist of four basis convolution blocks (as shown in Fig. 1),
of which the final outputs have strides of 4, 8, 16, and
32 in comparison with the input’s spatial size, respectively.
Note that the total number of convolution and non-linear
activation layers is varied in each block. Accordingly, in order
to ensure the reasonable increment of computation amount,
only four feature maps, which are ultimate outputs of the
aforementioned learnable blocks, are taken into account for
the stage of attentional features extraction. Meanwhile, since
there is no explicit definition of convolution blocks in the
VGG architecture, outputs of Rectified Linear Unit (ReLU)
activation layers preceding the last four max-pooling layers,
which also correspond to same strides as specified previously,
are chosen for further processes.

It is obvious that along the feedforward flow between
the convolution blocks, spatial resolution of the extracted
feature maps is reduced by half while the corresponding
depth size grows rapidly. Moreover, since the outcomes at
later layers contain semantically-richer context in channel
dimension compared to those obtained earlier, they can be
utilized to re-calibrate (i.e., strengthen the informative and
weaken the less-productive) feature responses extracted at
shallower layers in backward fashion. By such operation,
spatial details of the considered low-level feature maps are
fully embedded semantic information for eliminating available
ambiguities. As a consequence, it is advantageous to involve
finely-patterned (high-resolution) feature maps, which possess
well-organized representation of muscular modalities, in com-
pany with the semantically-rich (low-resolution) versions for
the high recognition performance of facial expression. Next,
the following sub-sections further characterize the algorithm
to extract attention features and how the corresponding results
are embedded to desired feature maps, respectively.

B. Attentional Features Extractor

This section describes the depth-wise attentional features
extractor adopted from [4] as shown in Fig. 2. Basically,
the major purpose of attention mechanism is to enable the
important features to be focused more intensively for a better
learning process. In the original work [4], the feature weights
are self-recalibrated through the capture of globally contextual
information across the channels. However, in the proposed
network, cross-channel attributes of feature maps chosen from
the core CNN are utilized not only to enhance their own

Global Pool FC, ReLU FC, Sigmoid
H x W x C 1 x 1 x C1 x 1 x C 1 x 1 x C/r

Fig. 2. Attentional Features Extractor.

representational capability but also to embed semantically-rich
details to lower-level versions.

As depicted in Fig. 2, at first, each channel of the concerned
feature map having size of H ×W × C is spatially averaged
to generate a C-length vector. Let fi be the feature maps
output from the aforementioned convolution blocks, where
i = 1, 2, 3, 4 corresponding to the feedforward direction in
the backbone network. In other words, f1 and f4 represent the
lowest- and highest-level feature maps of interest, respectively.
Subsequently, the obtained vector, denoted as gi ∈ RC,
conducts information of cross-channel inter-dependencies as
follows

gi = [G1(fi), . . . ,Gc(fi), . . . ,GC(fi)]T (1)

where Gc(.) indicates the Global Pool operator that processes
the cth channel of a considered feature map f as following
equation

Gc(fi) =
1

H ×W

H∑
h=1

W∑
w=1

[fi(h,w)]c (2)

where h = 1, . . . ,H and w = 1, . . . ,W are pixel coordinates
in the feature map fi and [.]c stands for the cth channel of
the concerned feature map or vector. As a result, depth-wise
semantic information is encoded into the d-length vector g
comprehensively. Next, to correspondingly model the under-
lying correlations across the channels, we feed the vector g
into two Fully Connected (FC) layers centered by a ReLU
activation function. It should be noted that the size of these
trainable layers is equivalent to C/r and C, respectively, where
r is the compression ratio fixed at 16 in this work for reducing
the computational complexity. These learning procedures can
be exhibited as below

ginti = Wfc2

(
ReLU(Wfc1

gi + bfc1
)
)
+ bfc2

(3)

where {Wfc1
∈ R

C
r ×C, bfc1

∈ R
C
r } and {Wfc2

∈
RC×C

r , bfc2
∈ RC} are trainable parameters of the first and

second FC layers, respectively, and ginti is the intermediate
depth-wise feature vector having length of C. Then, Sigmoid
activation function is adopted to re-weight the vector gatti ’s
responses in the range of (0, 1), which is expressed by

gatti =
1

1 + e−[ginti
]c

(4)

where gatti ∈ RC is the channel-wisely attentional feature
vector, which is then used for the enrichment of informative
context in the feature maps of interest learned from the
backbone CNN.
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C. Densely Backward Attention scheme

To this end, four attentional feature vector gatt1, gatt2, gatt3,
and gatt4 (demonstrated by outbound brown arrows of Att.
Ext. modules in Fig. 1) corresponding to the four chosen
feature maps f1, f2, f3, and f4, respectively, are inferred by
the attentional features extractor presented previously. With
respect to various backbone models, the vectors gatti have
different lengths of C as reported in Table I. Clearly, later
gatt with larger dimension comprises more informative speci-
ficity, which can utilized for re-calibrating finer-resolution
features learned from prior convolution blocks. Therefore, for
the purpose of extensively involving finely-patterned feature
without contextual ambiguities to the final emotion prediction,
it is necessary to embed the channel-wisely semantic details
from higher-level features in a backbone CNN in backward
style. Furthermore, since each attentional feature vector gatti
contains a certain level of descriptive statistics, we opt for
a dense concatenation manner to exhaustively integrate those
multi-level semantic representational features, by which spatial
details of lower-level features are refined more flexibly.

As manifested in Fig. 1, following operations are executed
after the extraction of attentional features

fatt4 = f4 ⊗ gatt4

fatt3 = f3 ⊗W113 (C[gatt3, gatt4])
fatt2 = f2 ⊗W112 (C[gatt2, gatt3, gatt4])
fatt1 = f1 ⊗W111 (C[gatt1, gatt2, gatt3, gatt4])

(5)

where ⊗ symbolizes the element-wise multiplication oper-
ator, C[.] denotes the vector concatenation procedure, and
{W113,W112,W111 ∈ RC×1×1×D} are the trainable pa-
rameters of C convolution filters with size of 1 × 1 × D.
Obviously, C is the channel size of the considered feature map
fi while the value of D depends on dimension of the output
concatenated by involved vectors gatti , gatti+1

, . . . , gatt4 . For
example, if using VGG-16 as the core model, values D of
W113, W112, and W111 are 1024, 1280, and 1408, respec-
tively (based on values C in Table I). In short, the function of
such learnable 1×1 convolution layers is to effectively reduce
the dimension of concatenated feature vector for appropriate
recalibration of considered feature maps. Moreover, by such
densely backward scheme, features captured at shallower
layers can still obtain much higher-level representations for
a more efficient refinement.

Then, the re-weighted feature maps fatti continuously pass
through the Global Pool modules followed by a concatenation
operator for the collection and comprehensive aggregation of
globally essential context at multiple levels, respectively, as
below

ffer = C
[
G(fatt1), G(fatt2), G(fatt3), G(fatt4)

]
(6)

where ffer refer to as the ultimate features of our DBA-Net
and G represents the Global Pool operator defined in (1) and
(2). Finally, we employ a Softmax classifier to recognize the
corresponding facial expression given a predefined number of
supervised emotion labels.

TABLE I
LENGTHS C OF EXTRACTED ATTENTIONAL FEATURE VECTORS gatti

(i = 1, 2, 3, 4) WITH RESPECT TO DIFFERENT BACKBONE CNNS.

Backbone CNN gatt1 gatt2 gatt3 gatt4

VGG-16 [1] 128 256 512 512

ResNet-101 [2] 256 512 1024 2048

DenseNet-161 [3] 384 768 2112 2208

Note: These values of C are also identical to the depth size of corresponding
feature maps f1, f2, f3, f4 extracted from the backbone networks.

III. EXPERIMENTS

In this section, we firstly provide an overview of the RAF-
DB dataset [12], which is used for evaluating the proposed
methodology. Then, corresponding implementation details are
given. Afterwards, ablation study with corresponding discus-
sion and comparison with state-of-the-art models are per-
formed to show the remarkable capability of our DBA-Net
in terms of FER.

A. Benchmark Dataset
RAF-DB [12], standing for Real-world Affective Faces

Database, is a large-scale dataset of in-the-wild facial expres-
sion. This database is challenging in the literature since its
30,000 images carries out a tremendous diversity of ages,
genders and ethnicity, head poses, lighting conditions, occlu-
sions, specialized manipulations, and so on. In this paper, we
only experiment with the single-label set, i.e., each image
exclusively indicates one of the seven basic classes of emo-
tion (angry, disgust, fear, happy, neutral, sad, and surprise).
Accordingly, 12,271 training and 3,068 testing images, which
are prior cropped into the resolution of 100 × 100 around the
regions of face, are involved for the designated experiments.
Moreover, it should be noted that mean class accuracy (i.e.,
sum of diagonal elements in the resulting confusion matrix) is
the golden metric to benchmark the classification performance
due to the between-class imbalance issue stated in [12].

B. Implementation Details
The proposed model and corresponding evaluations are

implemented using Pytorch [21] and Scikit-learn [22] frame-
works, respectively. Same as existing work, we also apply
following augmentation such as random change of hue and
saturation, horizontal flipping, and rotation in range of (-20◦

, 20◦) to the training images with mini-batch size of 64. In
addition, weight decay of 0.0005 is employed generalize the
proposed model more robustly.

About the training stage, we initialize the learning rate at
0.005 and use Softmax loss to assess the quality of DBA-
Net’s parameters given ground-truth labels. Then, in order to
accordingly minimize the calculated loss with respect to those
trainable parameters, we follow the optimization procedure
in [23] wherein stochastic gradient descent with momentum of
0.9 is utilized along with the ‘poly’-style schedule of learning
rate decay. Notably, the training process takes place in 50
epochs on one NVIDIA 1080TI GPU.

Authorized licensed use limited to: Kyunghee Univ. Downloaded on August 26,2020 at 22:35:31 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
MEAN CLASS ACCURACY ON RAF-DB [12] TEST SET WITH VARIOUS

SETTINGS OF BACKBONE CNN AND ATTENTION STRATEGY.

Backbone
CNN

Strategy Mean Class
Accuracy (%)

Number of
ParametersBaseline Aw/oDB DBA-Net

VGG-16 [1]
X 74.96 134.30M

X 77.35 14.81M
X 78.81 15.94M

ResNet-101 [2]
X 77.10 42.51M

X 77.48 43.23M
X 79.33 49.19M

DenseNet-161 [3]
X 77.21 26.49M

X 77.75 27.78M
X 79.37 42.91M

C. Ablation Study

For the purpose of showing robustness of the proposed
architecture regarding facial expression prediction, we ex-
periment three strategies, i.e., Baseline, Aw/oDB, and DBA
for each backbone network. Note that the Baseline refers to
as finetuning the pretrained model end-to-end. Meanwhile,
the Aw/oDB corresponds to the involvement of attentional
features extractor at the end of the basis convolution blocks but
without densely backward concatenation scheme. Accordingly,
quantitative performance of these strategies with different
backbone CNNs on the testing images is reported in Table II.

In general, Aw/oDB and DBA-Net outperform the baseline
one 0.38-2.39% and 2.16-3.85%, respectively, for all back-
bone networks. This implies that the engagement of attention
scheme at multi-scale features and subsequent depth-wise
aggregation of corresponding outcomes are plausible in the
scenario of facial expression identification. The major reason
is arguably originated from the fact that the attention strategy
at specific scales followed by a concatenation module can
intensively exploit features of different muscular modalities
captured at multiple levels in a CNN.

Moreover, regarding the effectiveness of the DBA compared
to Aw/oDB, the mean class accuracy is further improved
1.46% (in the case of using VGG-16 as backbone network),
1.85% (ResNet-101), and 1.62% (DenseNet-161). Such su-
perior performance points out the importance of additionally
integrating higher-level attentional feature vectors for recali-
brating lower-level feature maps. As discussed in Section II-C,
the dense combination in backward manner helps the network
flexibly express informative spatial features subject to multi-
level semantic details along depth dimension.

It is also obvious that the greater capacity the core CNN
has, the better performance is attained (but not significantly).
Concretely, using ResNet-101 and DenseNet-161 as backbones
yields the similar mean class accuracy of 79.33% and 79.37%,
respectively, which are around 0.5% higher than that of
employing VGG-16.

As for details of class-wise performance, we further present
confusion matrices of the proposed DBA-Net corresponding to
different backbone networks in Fig. 3. All of these confusion
matrices deliver common outcomes as follows. The prediction
of happy feeling yields highest accuracy and that of neutral,

TABLE III
COMPARISON OF MEAN CLASS ACCURACY ON RAF-DB [12] TEST SET.

Approach Mean Class
Accuracy (%)

DLP-CNN [12] 74.20
3DMFA [16] 75.73
ResiDen [15] 76.54
MRE-CNN [14] 76.73
Capsule-based Net [13] 77.48
Double Cd-LBP [24] 78.60
SPDNet [17] 79.43

DBA-Net (VGG-16) 78.81
DBA-Net (ResNet-101) 79.33
DBA-Net (DenseNet-161) 79.37

sad, and surprise also gives remarkable performance. On the
other hand, the expressions of disgust and fear are misclas-
sified with neutral/sad and sad/surprise by an average rate of
about 10%, respectively. We argue that the compression layers
following the dense combination of attentional features (i.e.,
W113, W112, and W111 in (5)) have to trade-off unavoidable
loss of concatenated semantic details, which leads to indis-
tinguishable representations of facial modalities between the
above-mentioned emotions.

Regarding the computational costs enumerated in Table II,
the DBA-Net with VGG as backbone can reduce the num-
ber of parameters by approximately 88% because of not
involving expensive FC layers at backend of the baseline.
Meanwhile, compared to original architectures of the ResNet
and DenseNet, using the proposed scheme only increases the
complexity by around 16%. Clearly, although the increment of
parameters’ amount is mainly caused by the stage of densely
backward concatenation, it is worth gaining an improvement
of 1.46-1.85% for mean class accuracy as aforementioned.

D. Comparison with State-of-the-art Methods

Through the quantitative comparison shown in Table III, the
proposed DBA-Net achieves mean class accuracy competitive
with that of the state-of-the-arts. In details, by only applying
VGG-16 as the core network in our architecture, higher rates
of 0.21-4.61% than those of the compared methods (except for
SPDNet [17]) are attained. Furthermore, with deeper backbone
networks like ResNet-101 or DenseNet-161, performance of
the proposed approach is continuously improved, and hence,
comparable to that of the cutting-edge SPDNet [17] with
trivially lower accuracy of 0.1-0.06%. Clearly, such impressive
performance on a challenging dataset expresses the advantage
of aggregating low- and high-level features by the utilization
of channel-wise attention mechanism in densely backward
structure.

IV. CONCLUSION

This study has introduced a cost-effective convolutional
network with densely backward attention, namely DBA-Net,
for FER. The proposed approach aims to aggregate low-
and high-level features in an efficient way according to the
hypothesis that facial emotion is represented by the fusion
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Fig. 3. Confusion Matrices of the proposed DBA-Net on RAF-DB dataset [12] with different backbone CNN: (a) VGG-16 [1], (b) ResNet-101 [2], (c)
DenseNet-161 [3].

of different muscular modalities extracted at multiple levels.
For such purpose, attention mechanism is densely embedded
in backward manner to a pretrained classification-based CNN
for leveraging the performance of FER. The achievement of
impressive experimental results enables the DBA-Net to be
widely applied in practical scenarios. Lastly, the issue of
several misclassification is our next focus in the future work.
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