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Abstract— Diabetic Retinopathy (DR), the complication lead-
ing to vision loss, is generally graded according to the amal-
gamation of various structural factors in fundus photography
such as number of microaneurysms, hemorrhages, vascular
abnormalities, etc. To this end, Convolution Neural Network
(CNN) with impressively representational power has been
exhaustively utilized to address this problem. However, while
existing multi-stream networks are costly, the conventional
CNNs do not consider multiple levels of semantic context,
which suffers from the loss of spatial correlations between
the aforementioned DR-related signs. Therefore, this paper
proposes a Densely Reversed Attention based CNN (DRAN) to
leverage the learnable integration of channel-wise attention at
multi-level features in a pretrained network for unambiguously
involving spatial representations of important DR-oriented
factors. Consequently, the proposed approach gains a quadratic
weighted kappa of 85.6% on Kaggle DR detection dataset,
which is competitive with the state-of-the-arts.

I. INTRODUCTION

Diabetic Retinopathy (DR), the complication developed
by long-term suffering from diabetes mellitus, is one of
the leading causes of vision impairment and blindness [1].
Therefore, accurately recognizing the severity of DR (no,
mild, moderate, severe, and proliferative DR) from fundus
photography enables the ophthalmologists to diagnose and
design treatment plan efficiently. Besides that, Convolutional
Neural Network (CNN) [2]–[6], a popular deep learning
architecture, has recently nailed impressive achievements
in various recognition-based topics such as human activity
recognition [7], semantic image segmentation [8], DR risk
progression identification [1], etc. Accordingly, grading DR
scale automatically by CNN becomes an active research
domain due to its importance for diagnosis and treatment.

Basically, the DR severity scales are determined by the
amalgamation of various structural factors inside the color
fundus images such as number of microaneurysms, hemor-
rhages, neural degeneration, vascular abnormalities. Hence,
there are two major CNN-based approaches proposed in
the literature for expressing potentially DR-oriented features:
(i) utilization of conventional CNN architecture built for
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classification problem [9]–[13] and (ii) integration of addi-
tional network streams [14]–[16]. As for the first group, the
authors of [9], [10], [11], and [12] employed 11-, 17-, 18-,
and 20-layer CNNs (which are commonly designed by se-
quential pipeline of convolution, rectified linear unit (ReLU)
activation, max/average pooling, Fully Connected (FC) lay-
ers), respectively, for classifying corresponding DR grades.
Meanwhile, the light-weight Inception-v3 architecture [3] is
utilized for transfer learning in such DR detection domain
[13]. Regarding the second group, a triplet of sub-CNNs [14],
i.e., Main, Attention, and Crop Networks, was introduced for
exhaustively examining multiple clinical details existing in
the fundus photography. On the other hand, the methodology
in [15] introduced two stages of patch-level learning to com-
prehensively acquire fine-to-coarse details at multiple scales
from the raw fundus photography for DR grade prediction.
Besides that, the authors in [16] slightly modified the original
ResNet-18 [4] by involving an additional attention stream to
enhance inter-class discrimination.

It can be realized that the existing multi-stream networks
are subject to costly computation while the remaining models
do not involve multiple levels of semantic context in the
constructed CNN. Particularly, the fact that multiple down-
sampling stages during feedforward process of the CNN
leads to the loss of certain spatial correlations between the
aforementioned DR-related signs, which are hardly encoded
along depth dimension. Thus, we hypothesize that only
taking into account highest-level features for the classifier
is insufficient in terms of predicting DR severity level.

Based on those observations, a Densely Reversed At-
tention based CNN (DRAN) is proposed to leverage the
learnable integration of channel-wise attention at multi-level
features in a pretrained CNN, which allows accomplishing
superior recognition performance in a cost-effective way. In
concrete, given that informative features are channel-wisely
encoded from shallow to deep layers, we opt for densely em-
bedding such semantically-rich details into the finer-grained
patterns by the attention extractors (which are inspired from
[6]) in a reversed manner. As a consequence, the attachment
of the densely reversed attention (DRA) stream into the
backbone CNN enables spatial representations of important
DR-oriented factors to be comprehensively involved in the
final prediction of the severity grade. Finally, we evaluate the
proposed DRAN using Kaggle DR detection dataset [17], of
which the experimental results in terms of quadratic weighted
kappa (QWK) are competitive with the state-of-the-arts.
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Fig. 1. Architecture of the proposed DRAN for DR severity classification.
Note that ‘Global Pool’, ‘Conv. Block’, and ‘Att. Ext.’ represent Global
Pooling layer, block of multiple convolutional layers, and Attentional
Features Extractor, respectively.

II. METHODOLOGY

In general, the proposed architecture is constructed by
a backbone CNN associated with the stream of DRA. As
demonstrated in Fig. 1, convolution blocks in the dashed
box represent the fundamental components of the backbone
CNN while the remaining portion manifests the attention-
based stream of aggregating multi-level features for the
classification of DR severity grade.

A. Backbone CNN

Initially, we preprocess the raw fundus images by re-
scaling to a predefined radius and then subtracting local
average color for suppressing the diverse difference of il-
lumination and resolution in the dataset [18]. Then, different
backbone networks, i.e., VGG [2], ResNet [4], and DenseNet
[5], are applied to demonstrate the flexibility of the proposed
DRA stream regarding various representational capacities.
In these classification networks, layers at the convolution
block acquire and represent features at a particular scale with
respect to a semantic degree. For instance, both ResNet and
DenseNet possess four fundamental convolution blocks (see
Fig. 1), of which the strides of final outputs are 4, 8, 16, and
32 with respect to the input’s spatial resolution, respectively.
Accordingly, for the purpose of securing the increment of
computational burden reasonably, only the ultimate outputs
of the above-described convolution blocks are involved to
the learnable DRA stream. Meanwhile, as for the VGG
architecture, outputs of ReLU layers followed by the last
four max-pooling layers, which also have same strides as
mentioned before, are taken into account for next stages.

B. Attentional Features Extractor (Att. Ext.)

This section further characterizes the channel-wise at-
tentional features extractor inspired from Hu et al. [6]. In
general, the primary objective of the attentional mechanism

is to facilitate informative features to be attended more
intensively in the learning procedure. Originally, the feature
responses are self-recalibrated through the global context
acquired across corresponding channels [6]. However, in our
model, the cross-channel details of the selected feature maps
are employed not only to enrich their own representational
ability but also to integrate semantically-richer information
into lower-level counterparts, which will be described at next
sub-section.

As manifested by the ‘Att. Ext.’ blocks in Fig. 1, each
channel of the considered feature map of size H ×W × C
is spatially averaged to generate a C-length vector at first.
Let Fi be the feature maps inferred by the above-mentioned
convolution blocks, where i = 1, 2, 3, 4 corresponds to the
feedforward route in the core CNN. That means, F1 and
F4 represent the lowest- and highest-level feature maps of
interest, respectively. Then, the computed vectors, defined as
gi ∈ RC, manage details of cross-channel dependencies as
follows

gi = [g1(Fi), . . . , gc(Fi), . . . , gC(Fi)]
T (1)

where gc(Fi) refers to as the Global Pool operator that
handles the cth channel of the feature maps Fi through
following formulation

gc(Fi) =
1

H ×W

H∑
h=1

W∑
w=1

Fih,w,c (2)

where h = 1, . . . ,H and w = 1, . . . ,W are pixel coordinates
in the feature maps Fi. Consequently, channel-wise semantic
details are encoded into the vectors gi ∈ RC.

Afterwards, to exploit the correspondingly underlying
cross-channel dependencies, the vectors gi are fed into two
FC layers with a ReLU layer in the middle. Notably, the
capacity of these learnable layers is equivalent to C/r and
C, respectively, where r is the compression ratio fixed at 16
in this model for the reduction of computational cost. These
learning processes can be described by following expression

ginti = WT
fc2

(
ReLU(WT

fc1
gi +Bfc1)

)
+Bfc2 (3)

where {Wfc1 ∈ RC×C
r ,Bfc1 ∈ R

C
r } and {Wfc2 ∈

R
C
r ×C,Bfc2 ∈ RC} are learnable parameters of the first

and second FC layers, respectively, and ginti ∈ RC are
the yielded channel-wise attention feature vectors. Next, we
adopt Sigmoid activation function σ(.) to rescale the vectors
ginti ’s entries to the range of (0, 1). As a result, channel-
wisely attentional feature vectors, namely gatti ∈ RC, are
acquired for enriching informative representations of the
feature maps typically involved from the backbone network.

C. Stream of Densely Reversed Attention

To this end, the attentional feature vectors gatt1, gatt2,
gatt3, and gatt4 (illustrated by outbound brown arrows of
Att. Ext. modules in Fig. 1) corresponding to the chosen
feature maps F1, F2, F3, and F4, respectively, are obtained
from the Attentional Features Extractor. Different backbone
CNNs make the vectors gatti have dissimilar lengths of
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TABLE I
LENGTHS C OF EXTRACTED ATTENTIONAL FEATURE VECTORS gatti

(i = 1, 2, 3, 4) WITH REGARD TO VARIOUS BACKBONE CNNS.

Backbone CNN gatt1 gatt2 gatt3 gatt4

VGG-16 [2] 128 256 512 512

ResNet-101 [4] 256 512 1024 2048

DenseNet-161 [5] 384 768 2112 2208

C as shown in Table I. Obviously, later gatti with larger
dimension contain more informative context, which can be
applied to recalibrate higher-resolution features extracted at
preceding convolution blocks. Thus, in order to utilize fine-
grained features without contextual ambiguities extensively
to the final classifier, it is essential to integrate the depth-
wisely semantic details from higher-level features of the
backbone network in a reversed style. Moreover, because
each attentional feature vector gatti possesses a particular
degree of descriptive statistics, we opt for an exhaustive
combination manner to embed those multi-level semantic
features comprehensively, by which spatial appearances of
coarser-level features are refined more flexibly.

As demonstrated in Fig. 1, following operations are per-
formed after extracting attentional features

Fatt4 = F4 ⊗ gatt4

Fatt3 = F3 ⊗ σ(WT
fc33 (C[gatt3, gatt4]))

Fatt2 = F2 ⊗ σ(WT
fc32 (C[gatt2, gatt3, gatt4]))

Fatt1 = F1 ⊗ σ(WT
fc31 (C[gatt1, gatt2, gatt3, gatt4]))

(4)

where ⊗ denotes the element-wise multiplication operator at
corresponding channels, C[.] means the vector concatenation
procedure, and {Wfc33 ,Wfc32 ,Wfc31 ∈ RD×C} are the
learnable parameters of FC layers. Clearly, C is the channel
size of the considered feature map Fi while the value of
D depends on dimension of the output concatenated by
attentional vectors gatti , gatti+1 , . . . , gatt4 . For example, in
the case of employing ResNet-101 as the backbone CNN,
values D of Wfc33 , Wfc32 , and Wfc31 are 3072, 3584,
and 3840, respectively (following the related lengths of
C in Table I). Furthermore, with such kind of densely
reversed mechanism, features acquired at shallower layers
can still gain semantically-richer details for a more efficient
contribution to the detection performance.

Then, the re-weighted feature maps Fatti are continuously
processed by the Global Pool modules in (2) and a subse-
quent concatenation operator for another dense aggregation
of globally-essential information at multiple representational
scales as follows

Fdr = C
[
g1(Fatt1), g2(Fatt2), g3(Fatt3), g4(Fatt4)

]
(5)

where Fdr stands for the finalized DR-oriented features of
our DRAN model. Finally, a Softmax classifier is adopted to
classify the corresponding DR grade based on a predefined
number of severity categories.

TABLE II
QWK ON DR KAGGLE [17] VALIDATION SET WITH DIFFERENT TYPES

OF BACKBONE CNN AND ATTENTION-EMBEDDED SCHEME.

Backbone
CNN

Strategy QWK (%)
Baseline AN DRAN

VGG-16 [2]
X 84.9

X 85.4
X 86.3

ResNet-101 [4]
X 85.4

X 86.1
X 86.7

DenseNet-161 [5]
X 85.5

X 86.5
X 86.9

III. EXPERIMENTS

Notably, the Institution’s Ethical Review Board approved
all experimental procedures involving human subjects.

A. Benchmark Dataset

Kaggle DR detection dataset [17] is used to evaluate
the proposed methodology. It contains approximately 35,000
training, 11,000 validation (public test), and 43,000 private
test images, which are categorized into five severity scales
as aforementioned. Remarkably, all the color fundus images
are supplied by EyePACS, a retinopathy screening platform.

B. Implementation Details

The proposed model and relevant evaluations are im-
plemented using Pytorch [19]. Similar to existing work,
augmentation techniques such as randomly cropping to size
of 448 × 448, horizontal and vertical flipping, and arbitrary
rotation are also applied to the training batches. In addition,
weight decay of 5e-4 is employed to generalize the proposed
model intensively. As for the optimization phase, we use
stochastic gradient descent with initial learning rate of 0.005
and momentum of 0.9. During training, the learning rate
decreases by half after every 20 epochs. In total, we execute
80 training epochs on one NVIDIA GTX 1080TI GPU.

C. Ablation Study

To this end, we conduct three experimental strategies, i.e.,
Baseline, AN, and DRAN with respect to each backbone
CNN, to benchmark the effectiveness of the proposed ar-
chitecture. Notably, the Baseline means that the pretrained
backbone CNN is fine-tuned end-to-end. Meanwhile, the AN
refers to as the additional engagement of attentions at the end
of basis convolution blocks but without the densely reversed
stream. Finally, QWK measures of these strategies on the
validation set are presented in Table II.

Apparently, AN and DRAN with respect to different
backbone CNNs show superior performance over the corre-
sponding Baselines with higher QWK of 0.5-1.0% and 1.3-
1.4%, respectively. It is argued that the utmost reason comes
from the benefit of utilizing attention strategy at different
scales followed by a concatenation operator, which is able to
maintain features of different DR-oriented factors throughout
various representational levels in the backbone networks.
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TABLE III
COMPARISON OF QWK ON KAGGLE DR [17] TEST SET.

Approach QWK (%)

11-layer CNN [9] 76.7
SI2DRNet-v1 [12] 80.4
14-layer CNN [11] 85.1
Zoom-in-Net [14] 85.7

DRAN (VGG-16) 84.9
DRAN (ResNet-101) 85.4
DRAN (DenseNet-161) 85.6

Moreover, compared to AN, DRAN is capable of boosting
the QWK more 0.4% (in the case that VGG-16 is the
backbone CNN), 0.6% (ResNet-101), and 0.9% (DenseNet-
161). Accordingly, these improvements imply the advantage
of exhaustively embedding deeper attentional feature vectors
to recalibrate shallower features. In concrete, as previously
mentioned in Section II-C, the operator of dense concate-
nation in reversed manner further enables low-level features
(which contain spatially informative details of DR-related
factors) to be extensively involved in the final classifier.

Also, it can be observed that higher capacity of backbone
CNN is able to produce better prediction performance. Par-
ticularly, DRAN equipped with backbones of ResNet-101
and DenseNet-161 increases the QWK by 0.4% and 0.6%,
respectively, compared to that using VGG-16.

D. Comparisons with State-of-the-arts

For the comparison with other methods, the proposed
DRAN with three different backbone CNNs is evaluated by
the Kaggle DR test set. The benchmark results reported in
Table III show that of the proposed approach is competitive
with the state-of-the-arts. Specifically, although Zoom-in-
Net [14] achieves highest QWK, the superiority over the
proposed DRAN (which utilizes DenseNet-161 as backbone
network) is insignificant (0.1%). It should be noted that their
results are obtained from the expensive triplet of sub-CNNs
and ensemble learning. In a nutshell, thanks to the dense
attention of higher-level depth-wise features to spatially-rich
details at lower levels in reversed scheme, which allows
early involvement of finely-patterned features, the proposed
architecture can achieve an impressive performance on such
challenging dataset.

IV. CONCLUSIONS

In this paper, a CNN with densely reversed attention,
i.e., DRAN, has been introduced to effectively address the
DR detection problem. Concretely, the proposed architec-
ture enables finely-patterned (high-resolution) feature maps,
which possess well-organized representation of DR-oriented
factors, to be smoothly combined with the semantically-rich
(low-resolution) counterparts for a better recognition perfor-
mance. The key for such utilization is the dense embedding
of a channel-wise attention mechanism into a pretrained
CNN in reversed manner. As a consequence, experimental
results have demonstrated consistent improvements of the

proposed model, which is constructed from a baseline net-
work to the involvement of multi-scale attentional features
extractor and a further stream of densely reversed attention.
In the future, DRAN can be potentially extended for tackling
other disease recognition problems besides detecting DR
severity scale.
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