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Abstract—Data Interoperability provides a bridge between
information systems to store, exchange and consume heteroge-
neous data. In order to achieve this goal, schema maps provide
the necessary foundations. Traditional solutions rely on expert
generated rules, ontologies, and syntactic matching to identify the
similarity between attributes in the various data schema. While
previously we have presented the effectiveness of transformer
based models and unsupervised learning to calculate attribute
similarities, in this paper we present the additional application of
a naive syntactic similarity measurement. We have evaluated the
results of agreement between the computed and human annotated
results, in terms of Mathews Correlation Coefficient (MCC).
These results indicate that on weighted comparison there is no
positive effect of including naive syntactic similarity in addition
to semantic similarity.

Index Terms—Schema Matching, Health Information Manage-
ment, Text Processing, Transfer Learning

I. INTRODUCTION

Data Interoperability is a key requirement for achieving
ubiquity in information systems. The ability to store, exchange,
and consume data among heterogeneous systems or services
(IEEE 610.12 [1]) allows the stakeholders to gain a plethora
of benefits, which otherwise would be operationally limited to
individual applications and providers. Previous methodologies
[2], [3] to provide schema mapping are based on expert
generated rules, ontology engineering, and/or pattern match-
ing. However state-of-the-art solutions in the field of Natural
Language Processing (NLP) convert words and sentences into
embedding vectors, which provide better automated solutions
to handle unseen data. Word embedding techniques such as
Word2Vec suffer from various problems, including out of
vocabulary words, which are most conspicuous in the case
of attribute names for the data schema, due to their non-
standardized naming conventions. Attribute names such as
“PatientGender”, “DOB”, and ‘“‘systolicbp” are all valid for
data schema since they are queried with hardcoded checks
and expert generated rules. In order to create the schema maps
automatically, the first requirement is to identify the similarity
between any pair of attributes. In our previous work [4], we

978-1-6654-2678-7/22/$31.00 ©2022 IEEE

have created schema maps for various Healthcare Information
Management Systems (HMIS) by utilizing transformer based
transfer learning techniques to convert semantically enriched
attribute suffixes into embedding vectors. These vectors were
then compared using cosine similarity to identify similar
attributes, and evaluated against a human-annotated dataset
to verify the accuracy of the method. In some of the pre-
vious studies, [5], a combination of similarity between data
types of the attribute instances and semantic reconciliation
through domain ontologies, has been introduced as a feasible
solution. Additional application of syntactic reconciliation can
increase the distance measures and by extension the amount
of information that is useful for determining the similarity
of attributes. The premise being; for an attribute pair, a
weighted comparison based on both semantic and syntactic
distance measures, can capture a larger number of scenarios
and provide better performance in this task. In the current
study, we aim to extend our previous semantic only solution,
based on pre-trained Bidirectional Encoder Representations
from Transformers (BERT) Natural Language Inference (NLI)
models [6] to include the syntactic elements in determining
the similarities between five schemas. We will evaluate the
results of our current work using different weights for syntactic
and semantic distance measures and evaluate the performance
of our computed methods with human-annotated data, using
Mathews Correlation Coefficient (MCC) score. MCC provides
a reliable measure of inter-rater agreement on our negatively
imbalanced dataset, where other metrics such as accuracy, and
f-score are not truly representative of the models’ performance

[7].

Rest of the paper is organized as follows. Section II provides
information on previous approaches. Section III introduces the
notations used throughout this paper, and is a necessary read
before delving into the details of our methodology in section
IV. The experimental setup follows in section V, and its results
are then presented in section VI. Finally, section VII concludes
the paper.
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II. RELATED WORK

Ubiquitous healthcare service delivery is dependent on the
stability and flexibility of its data storage engine and Electronic
Health Records(EHR). EHR can provide a rich source of
a patient’s medical history, however, within medical silos
the EHRs, without data interoperability, are not sufficient
enough to build a comprehensive and true representation
of the patient. Various hospitals, clinics, and other health
centers rely on a variety of data storage solutions, which
can cause data and information miss-match. In the past,
many research and industry-led initiatives have attempted to
bridge this gap by generating schema maps, which can enable
heterogeneous HMIS to not only exchange healthcare data but
also consume it. Massmann et al. [8] utilized a combination
of various matching algorithms to provide a semi-autonomous
solution to match schema elements in XML, relational, and
Web Ontology Language (OWL) formats. Their work was
further enhanced by [9] to include related concepts (such
as is-a or part-of relationship) using linguistic semantics to
determine the correspondence between various schema. Mehdi
et al. [10], utilized a regular expression based approach to
match data instances, for a corresponding pair of attributes.
The authors, first convert the data instances for the source
attribute into regular expressions, which are then used to
match random values from data instances in the target at-
tribute belonging to a different schema. With advancements in
information technology, the research was then shifted towards
using machine learning along with semantic information to
generate more accurate maps. Koutras et al. [11] proposed
the Relational Embedding MAtcher (REMA), which uses the
relational embedding technique to convert database instances,
attributes, and schema information into embedding vectors.
The vectors for a source schema are then compared with
target schema vectors to determine the correspondence among
their respective attributes. Lomonosov et al. [12] combined
lexical schema matching with semantic techniques to boost
the performance of machine learning models (Naive Bayesian,
logistic regression, and gradient tree) for correctly identify-
ing similarities between attribute pairs. Portisch et al. [13]
performed a brief survey to determine the effectiveness of
background knowledge in schema matching. The authors also
introduced their knowledge graph embedding-based approach,
which utilizes the RDF2Vec [14] to convert resource labels
into vectors. The similarity between the vectors can then be
used to determine the similarity between the schema.

III. NOTATIONS

The set of Data Schema (S) represents the participating
schema used as an input to our attribute similarity classifica-
tion process. This set contains partial schema from various
open sourced HMIS systems (s;). A represents the set of
attributes within S, while a;;, represents the jth attribute of
the i*" schema. Each attribute a;; is further enriched with a
context, type, and semantics to create an amplified attribute
Aij. The structure of \;; is shown in Table I

TABLE I
THE CONTEXTUALLY, SYNTACTICALLY, AND SEMANTICALLY ENRICHED
ATTRIBUTE \;;.

Attribute Context

Schema Name Table Name | Attribute Name

Recorded Date

Schema Version | Source

Attribute Type

Data Type | Possible Value

Attribute Semantics

Suffix Array | Concept Array

The “Attribute Context” section contains metadata elements
such as the name of the schema and table that a particular
attribute belongs to. “Attribute Type” contains information on
the possible values and data type of the attribute. Here the
“Possible Value” is collected from the data instances, while
the “Data Type” is a calculated metric. In this study the valid
values for “Data Type” are restricted to “Long” (64 bit integer),
“Double”, “Date”, “DateTime” (in ISO format), “Object”,
“List”, and “String”. It is pertinent to note here that we have
greatly simplified the data formats, using regular expressions
and Java’s typecasting APIs. However, for a better solution
to this problem and to increase the data formats alternate
techniques such as the deep neural network-based solution on
relations provided by Hulsebos et al. [15] or one of the other
deep learning-based techniques on data tables as highlighted
by Bonfitto et al. [5], should be used. “Attribute Semantics”
section contains the suffix array generated from the attribute’s
name and concept array which contains concepts belonging
to each valid suffix. From A, our methodology collects the
syntactic measures in the form of the attribute’s format f;;
and semantic measures e;;. These two metrics are used to
calculate a similarity score for syntactic comparison (Csyr)
and a semantic one (Cgep,). The two similarity scores are then
converted into an overall similarity score ¢, by weighted (wy)
summation of ¢y, and ceem.

IV. METHODOLOGY

Using the attribute context, a pair of amplified attributes \;;
are collected, which belong to distinct schema s;. The compar-
ison process starts with the application of “Context Identifier”
in Fig. 1. The contextual information of the attributes a;; and
aio is present in Aj; and Aoy, respectively. This is matched to
check if the schema s1 and s, are the same or not, based on the
name of the schema. If the two schemas are equal, no further
processing is performed for this pair. On the other hand, if
the schema is not equal, a simple attribute name comparison
is used to determine if the attributes are equal or not (such
as “ID” and “id” are considered equivalent). In most cases,
a simple schema name check should be enough, however, to
provide a general solution and to maintain transparency of
operations, the complete context of the attribute is maintained
in Aj;. Next the “Syntactic Type Identifier”, extracts the type
of attribute f1; and fio. This operation checks if the data
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Fig. 1. The workflow for measuring the similarity between attributes.

instances associated with the attribute in “Possible Values”,
can be typecast into “Long” or not, followed by typecasting
into “Double”, then ISO “date” and “date-time” objects. If this
process fails, we then check if the value can be an object or
list, by looking at the encapsulating characters (“{}”, and “[]”
respectively) for each element of the “Possible Values” field in
Aij. If at this point, we are still not able to determine the type
of the attribute, it is set as a string. The determined type is
used to update the \;; and to calculate the syntactic similarity,
later on.

“Semantic Identifier” first breaks the attribute name into a
suffix array using three methods; forward suffix generation,
backward suffix generation, and regular expressions. In for-
ward suffix generation, each attribute name is split into suffixes
of length 2 — length of attribute name, while in backward
suffix generation the attribute name is split in reverse order. In
the regular expression-based method the suffix is split on case
changes and special characters, such as “-”, “_”, and others.
The three lists of suffixes thus produced are then added to a

“TreeSet” which alphabetically sorts them as well.

For each suffix, we then query Unified Medical Language
System (UMLS), to identify if the suffix has an associated
concept in the healthcare domain. If the suffix is not recog-
nized by UMLS it is discarded from the set. We additionally,
collect the concepts associated with each suffix from UMLS
and add them to a concept array. This concept array is then
converted into a sentence (by joining concept descriptions with
the white space character) by the “Semantic Identifier”. This

sentence is passed to the transformer models, which convert
it into an embedding vector.

The “Similarity Matcher” converts the syntactic types fi1
and fo; into syntactic similarity cg,, by assigning it a value
of 0, if the “Data Type” elements of \;; and \y; are different
and 1, if they are either same or convertible. For simplicity,
we consider “Long” to be convertible to “Double”, “Date”
to “DateTime” and vice versa. It also coverts the embedding
vectors representing e;; into csen, by calculating the cosine
similarity between them.

The two similarity scores, Cgem and cgyy, are then individu-
ally normalized between “0” and “0.5”. We then calculate the
overall similarity score between the pair of attribute using the
method shown in “(1)”.

¢ = Wk * Csyn + (1 — wg) * Coem|wy € [0.0 = 0.9] (1)

The similarity score c is then used to classify its correspond-
ing attribute pair < aj1, az; >, into “equal”, “similar”, or “dis-
similar”. This three-class classification problem is dependent
on two thresholds « and (. Here « represents the boundary
line, above and equal to which the attribute instance can be
classified as equal, while /3 is the boundary line below «,
above and equal to which the attributes are similar. Instances
with a similarity score below [ are dissimilar. In order to
calculate v and 3, we evaluate class wise MCC score and then
identify the points where M CCeqyqr is maximized, followed
by M CClgimiiar, and finally M CCly;ssimitar. This process is
repeated for wy values from 0.0 — 0.9, which eventually
provides the best thresholds for all three thresholds (wy,, o, and
(). These thresholds are then used to evaluate the test dataset
using the MCC score, which provides an overall agreement
between the computed similarities and the human-annotated
dataset.

V. EXPERIMENTAL SETUP

In this study, the five open source data schema from
the domain of healthcare were made a part of the set S.
These include EMRBOTS (s;) [16], OpenEMR (s3), Pan
et. al(s3) [17], MedTAKMI-CDI (s4) [18], and our custom
implementation (s5) [19]. For experimental purposes, we
only select partial views of s;, which eventually produce a
disjoint set of 254 attributes A. The attributes are cross-
compared with each other only if they belong to different
s;. Thus the total number of comparisons between our se-
lected attributes is 20349 (with a total of 64,516 possible
comparisons, 23,818 belong to the same schema, and reduction
to half to avoid commutative comparisons). For generating
sentence embeddings, we have used five BERT based NLI
models, trained on the Semantic Textual Similarity benchmark
dataset (STSb) [20]. These include, “bert-base-nli-stsb-mean-
tokens”, “bert-large-nli-stsb-mean-tokens”, “roberta-base-nli-
stsb-mean-tokens”, “roberta-large-nli-stsb-mean-tokens”, and
“distilbert-base-nli-stsb-mean-tokens”. For establishing the
baseline truth dataset, the 2d matrix of attribute comparisons
was annotated by four human experts. We then calculated
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Fig. 2. Threshold selection for the five embedding generation models (a) “bert-base-nli-stsb-mean-tokens”

base-nli-stsb-mean-tokens”, (d) “roberta-large-nli-stsb-mean-tokens”

the mode of the annotation to create one set of attribute
comparisons, with similarity values (equal, similar, dissimilar)
based on the most commonly selected labels.

VI. RESULT

In order to calculate the results, we first split the computed
and mode of the annotated dataset into training and test
sets with 70%:30% split. We then calculated the optimal
thresholds for the five sentence embedding generation models,
by calculating the MCC score for the training sets. The MCC
scores were evaluated using one vs all class evaluation. The
dataset was sorted on the maximum value for MCCeyyai,
followed by maximum value for MCClsimiiar, and finally
MCCyssimitar- The threshold points where the maximum
value was achieved, for each model are shown in Fig. 2. In
case of “bert-base-nli-stsb-mean-tokens” and “distilbert-base-
nli-stsb-mean-tokens”, multiple values of « and 8 had the
same MCC scores, where we selected the lowest thresholds.
The graphs are plotted based on increasing values of wy, a,
and . In Fig. 2 (a), the optimal threshold for “bert-base-
nli-stsb-mean-tokens”, is at « greater than or equal to 0.85,
while 3 greater than or equal to 0.9. Here the MCCeqyai
and M CCly;ssimiiar Scores are above 0.5, indicating good
agreement between the results of this model and the annotated
data. However, the M CCl;nira, value of -0.0027 indicates
random classification. Due to the biased nature of our dataset,

(©)

, (b) “bert-large-nli-stsb-mean-tokens”, (c) “roberta-

, and (e) “distilbert-base-nli-stsb-mean-tokens”

with a very large number of dissimilar elements and a small
number of equal and then similar elements, these numbers are
acceptable. For Fig. 2 (b), the values of o and /3 both move
ahead to 0.9 and 0.95, however, the MCC scores achieved by
this model against the annotated dataset remain the same.

The results obtained from the application of “roberta-
base-nli-stsb-mean-tokens” and ‘“roberta-large-nli-stsb-mean-
tokens” embedding models are shown in Fig. 2 (c) and Fig.
2 (d), respectively. The o and 3 threshold values for these
model are also closely related, as in the previous case. Finally,
Fig. 2 (e) shows the results for the “distilbert-base-nli-stsb-
mean-tokens” embedding model. As shown by these graphs,
the MCC scores for class equal, similar, and dissimilar are
all very close to each other. While the MCCy; 14 Score
for “roberta-large-nli-stsb-mean-tokens” is higher than the
other four models, it is still very small, relative to the other
classifications.

Fig. 3 shows the MCC result of various wy, values, when the
thresholds o and 3 are kept constant. These results show the
ineffectiveness of incorporating syntactic similarity measures
in determining the similarity between the attribute pair. The
best MCC scores are achieved when wy, is at 0.0. This value of
wy, causes the syntactic similarity measure to become 0.0 while
the corresponding semantic similarity is maximized. Thus, at
this stage, the results show that only the BERT based NLI
models provide significant results in terms of identifying the
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similarity between the attributes.

On the test dataset the MCC score, achieved at various
syntactic and semantic thresholds (wy and 1-wy,), for the five
models is shown in Fig. 4. Similar to the results observed

in the threshold selection phase, the best MCC values are
achieved by the models when the weight of the semantic
similarity is maximized. In general, as we move the weights, in
favor of syntactic similarity the inter-rater agreement between
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the five computed models and mode of the annotated dataset,
decreases, eventually dropping below 0.1. When compared to
our previous results, as presented in [4], all models reflect
acceptable performance, with a normalized MCC score around
0.4. In absolute terms, this score indicates a weak level of
agreement [21] between computed and mode of annotated
data.

VII. CONCLUSION

Traditional approaches to resolving heterogeneity in data
schemas rely on a combination of syntactic and semantic simi-
larities, driven by expert-generated rules, which lack flexibility.
Previously, we have proved the applicability of state-of-the-
art transformer-based BERT NLI models in determining the
similarity between attribute pairs and by extension generating
the schema map. With empirical results, we now know that
BERT models, trained on the STSb dataset are enough in
accomplishing this similarity classification task. The addition
of naive syntactic similarity measures only reduces the effec-
tiveness of the linguistic semantic models. However, as the
syntactic similarity measurements grow stronger, they might
be able to produce an impact and in the future, we will look
towards evaluating the effectiveness of these newer approaches
on our proposed schema map generation process.
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