

20th International Conference On Smart Living and Public Health

Ontology Alignment for accurate Ontology Matching: A Survey

Introduction

- Semantic heterogeneity in knowledge-defined networks arises from differences in knowledge representation, impacting collaboration among edge nodes
- Ontology matching addresses this issue by determining weights and confidence levels for multiple similarity assessment methodologies
- Ontology matching operations can be further enhanced through approaches such as Generative Adversarial Networks
- An improved SA-GNN approach is proposed to address the ontology alignment problem

Problem Statement

- The use of genetic algorithms (GA) to solve the metamatching problem in ontology has two main limitations: slow convergence and premature convergence
- These problems can reduce the algorithm's effectiveness and efficiency in finding optimal solutions.

Simulated Annulling based Generative Adversarial Network Reduce the evaluation-Discriminator Generator Params

OAEI/s Benchmark Description

Case ID	Introduction
101-104	Ontologies which are consistent
201-208	Not having similar linguistics and lexical features
221-247	With different structure features
248-266	Not having similar structure, and other features
301-304	Real World Ontologies

Evaluation Results

Cases ID	Edna	TaxoMap	AROMA	Falcon	GeRMeSMB	MapPSO	CODI	Our proposal
101-104	1.000	0.507	0.988	1.000	1.000	1.000	0.997	1.000
201-208	0.546	0.435	0.735	0.843	0.884	0.692	0.456	0.799
221-247	0.884	0.693	0.958	0.997	0.976	0.984	0.983	0.992
248-266	0.350	0.387	0.372	0.509	0.602	0.480	0.373	0.559
301-304	0.462	0.428	0.629	0.799	0.470	0.349	0.590	0.789

Conclusion

- Proposed approach compared with other state-of-the-art approaches for ontology alignment
- The Proposed SA-GAT optimizes a single-objective model by iterative tuning of parameters and achieving improved matching outcomes
- In future, we intend to optimize the proposed approach for fully taking the structure of the ontology into consideration

Authors: Hasham Khan¹, Muhammad Saqib¹, Hasan Ali Khattak¹, Syed Imran Ali², and Sungyoung Lee²

¹ School of Electrical Engineering and Computer Sciences, National University of Science & Technology, (NUST) Islamabad, Pakistan

Department of Computer Science and Engineering, Kyung Hee University, Giheung-gu, Yongin 17104, South Korea