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Energy trading in the day-ahead and continuous energy market enables the maximization of profits for market participants, 

such as utility companies/suppliers and residential/industrial consumers. However, in practice, the AI-based decision-

making process for accepting or rejecting bids/offers from customers/suppliers, commonly referred to as bidding decisions, 

often experiences performance degradation due to the fluctuation of renewable energy resources and the intermittent 

demand behavior of customers. This phenomenon is widely recognized as a data distribution shift in machine learning. One 

conventional approach involves training the model from scratch over an extended historical period, incurring significant 

computational and storage costs. To address this challenge more effectively, we propose a Continual Learning-based 

Energy Bidding framework (CLEB). This framework employs a relay-based continual learning method, utilizing a 

combination of a small portion of historical data and the most recent data with different distributions to enhance the 

accuracy of bidding decisions. The framework consists of predictive neural networks, specifically a Multi-Layer Perceptron 

(MLP), as well as data buffers for storing newly acquired data from a non-stationary data stream within an application. 

Subsequently, the evolving probability distribution of the data stream identified by the framework is utilized to retrain the  

model. Our evaluation in a public European energy trading dataset shows that the framework significantly improves 
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accuracy performance of prediction model under the data distribution shift occurrences, allowing the model adaptively itself 

to deal with non-stationary data distributions in dynamic environments.   
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1 INTRODUCTION 

Energy trading involves transactions between utility companies/suppliers (a.k.a. power generators) that 

produce electricity and industrial suppliers, who purchase power from suppliers to sell it to residential 

consumers, as depicted in Figure 1. Energy trading plays a vital role in alleviating power shortages and 

ensuring the stable operation of the electricity market. Energy trading in both the day-ahead and continuous 

markets is susceptible to various uncertainties, including the intermittent behavior of renewable energy 

resources influenced by climate change and fluctuations in customer demand [1]. This phenomenon is 

commonly recognized as a data distribution shift in the field of machine learning. An effective energy trading 

strategy should maximize the profits of all participants while maintaining an instantaneous energy balance 

amid various uncertainties [2]. 

Various research interests and publications on energy bidding strategies have been explored, categorized 

into two primary approaches: conventional optimization [3] and deep learning-based method [5]. While the 

approach proposed in [3] finds an optimal bidding strategy for each participant by solving a multi-objective 

optimization problem through a central entity (i.e., an energy market operator), reinforcement learning (RL) [5] 

is employed to determine an optimal bidding strategy, aiming to maximize rewards by inferring the best action 

for a given state. Nonetheless, most of these approaches do not consider the challenge of data distribution 

shifts, leading to previously trained models performing suboptimally with real-time data. Continual learning 

(CL) algorithms are considered as promising solutions to address this challenge. CL algorithms learn 

concepts and tasks sequentially without degrading performance on prior tasks. Several CL strategies are 

described in [6]: (1) regularization strategies, (2) rehearsal strategies (also known as relay-based 

buffer/memory), and (3) architectural strategies. CL algorithms have demonstrated success in various 

domains since the models continuously adapt and update its parameters to account for such dynamic 

situations within the application. 

Based on these observations, this work aims to introduce a framework called CLEB (Continual Learning-

based Energy Bidding) that leverages continual learning algorithms, specifically the relay buffer strategy, to 

continually adapt to distribution changes in non-stationary data streams. The CLEB framework includes a 

multi-layer perceptron network (MLP) for bidding prediction and buffers for storing new data. Addressing data 

distribution shifts involves the use of an adaptive sliding window method [8], with a relay buffer employed to 

store detected distribution shifts. Additionally, the prediction output is estimated and compared to an 

adjustable threshold to identify performance shifts. Similarly, if model performance degrades suddenly, the 
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present input data is stored in the relay buffer; otherwise, it is stored in a sampling buffer. When the relay 

buffer is full, model adaptation is triggered. The MLP is subsequently retrained on the data retrieved from the 

relay buffer and sampling buffer, with the goal of mitigating catastrophic forgetting [9]. Subsequently, the 

CLEB framework is benchmarked in terms of model accuracy in a continual learning strategy within the 

context of energy bidding, using a publicly available European energy trading dataset. The results indicate 

 

Figure 1. The energy bidding application scenario. 

that the CLEB framework has the potential to effectively manage energy bidding in non-stationary data 

streams. 

2 RELATED WORK 

2.1 Energy Bidding Strategy 

Numerous recent studies have explored various methodologies within the realm of energy bidding strategy 

research.  

A game theory-based approach [4] have been introduced for conducting transactions within the energy 

market. Participants submit information to a central entity, which then formulates the energy bidding strategy 

and communicates it to all stakeholders. However, as the number of participants increases, the data volume 

grows exponentially, intensifying the challenges associated with real-time resource scheduling in energy 

management. In [10], the authors introduced an energy market framework in which participating participants 

disclose their cost functions to the market operator. Subsequently, the optimization of the distribution network 

is collectively resolved through a decentralized approach. An additional investigation [11] unveiled a 

framework for a distributed system operator within the context of an energy market. This framework has 

demonstrated its ability to reduce supply costs for prosumers within a localized distributed area while 

simultaneously enhancing the payoffs of generation companies. Moreover, several research endeavors have 



4 

delved into the application of Reinforcement Learning techniques to refine bidding strategies in the energy 

market. In [12], the authors harnessed Deep Reinforcement Learning (DRL) within the wholesale market, 

aiming to optimize generator bids based on limited, readily available information. Meanwhile, in [13], the 

authors employed a deep neural network to ascertain the best power trading dynamics amongst multiple 

microgrids featuring batteries and power generation. In [14], the authors adopted the multiagent deep 

deterministic policy gradient (DDPG) methodology to estimate the Nash equilibrium within the competitive 

bidding landscape involving power suppliers. 

2.2 Continual Learning 

This section provides an overview of several studies on classification and regression tasks within the domain 

of CL.  

This section provides an overview of several studies on classification and regression tasks within the 

domain of CL. In [15], the MNIST dataset is divided into five distinct tasks, with one of them containing a pair 

of unique labels representing different digits. The proposed model continually learns to effectively solve a 

sequence of tasks using a transfer learning strategy. CL algorithms have been studied in various energy-

related sectors. For example, in [7], neural networks are developed to predict renewable energy generation 

using a CL architecture-based strategy. This forecasting depends on power consumption, which is subject to 

fluctuations due to various factors, such as acquiring new electrical devices or an increase in occupants in a 

building or factory. Additionally, weather data exhibits non-stationary behavior, including extreme weather 

conditions. Moreover, in [16], two distinct CL application scenarios are outlined in the context of setting up 

local smart grids. These scenarios encompass the task-domain incremental scenario and the data-domain 

incremental scenario. Both scenarios are relevant to power forecasting, covering aspects such as predicting 

energy generation and load consumption levels. The research also delves into the performance evaluation of 

various regularization-based CL algorithms, specifically Elastic Weight Consolidation (EWC) and Online-EWC. 

However, none of these studies consider employing CL algorithms for energy bidding applications, where 

the bidding decisions are significantly impacted by the uncertainty factors of the environment, such as power 

generation, load consumption, or electricity market prices.     

3 CLEB FRAMEWORK OVERVIEW 

The proposed CLEB framework consists of three fourth components: (i) Model, (ii) Input Distribution Shift 

Detection, (iii) Output Distribution Shift Detection, and (iv) Adaptation, as shown in Figure 2. In this context, 

the Model component incorporates an MLP neural network to predict bidding decisions. For example, it 

determines which bidding transactions from industrial consumers and offer transactions from utility suppliers 

should be accepted or rejected based on the incoming trading transaction data stream. The Input 

Distribution Shift Detection component is utilized to identify changes in the probability distribution of the 

input data, 𝑃(𝑋). Similarly, the Output Distribution Shift component is designed to detect changes in bidding 

prediction values, 𝑃(𝑌|𝑋). Furthermore, we adapt a relay-based continual learning strategy in the Adaptation 

component to update the model and dynamically adjust the threshold following each update. The CLEB 

framework can flexibly integrate various data detection shift methods as well as prediction models, tailoring its 

approach to specific application scenarios and data types. 
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3.1 Model 

The bidding decision prediction task is regarded as a classification problem, specifically determining which 

bids/offers are accepted or rejected. To address this, an MLP neural network is employed, comprising an 

input layer, multiple hidden layers, and an output layer with fully connected neural networks extending from 

the input to the output layer. We consider a data stream 𝑿𝒕 for 𝑡 ∈ {1,2, . . , 𝑇}, where each input 𝑿𝒕 is a  

 

Figure 2: The proposed CLEB framework. 

sequence of bidding transactions and offer transactions submitted by consumers and suppliers. Let 𝑾 ∈ ℝ𝑑 

be the parameter space for our model. The total binary cross-entropy loss on the training set 𝐷𝑡𝑟𝑎𝑖𝑛 =

{(𝑿𝒕′ , 𝒀𝒕′)|𝑡′ < 𝑡}𝑡′=1
𝑛  is represented as: 

𝐿𝑡′(𝑾) = −
1

𝑛
∑ [𝒀𝒕′ × log(ℎ𝜃(𝑿𝒕′)) + (1 − 𝒀𝒕′) × log(1 − ℎ𝜃(𝑿𝒕′))]𝑛

𝑡′=1 , 

where n stands for number of training examples, 𝒀𝒕′  refers to the target label for training example 𝑡′, 𝑿𝒕′ 

represents the input for training example 𝑡′, and ℎ𝜃 denotes the model with learnable weight 𝜃. The predictor 

is used to infer the bidding decision 𝒀̂𝑡, given that the MLP neural network is fully trained with optimized 

neural network weight ℎ𝜃∗ and the current input at time 𝑡 is 𝑿𝑡. 

3.2 Input Distribution Shift Detection 

A non-stationary data stream undergoes changes in properties over time, posing challenges for energy 

bidding prediction models. To determine the stationarity of the data stream, meaning whether the distribution 

of the current data 𝑿𝑡 is similar with the old data 𝑿𝑡′, various data distribution shift detection methods have 

been proposed in the literature, such as Adaptive Windowing (ADWIN) [8], Page-Hinkley [17], and Drift 

Detection (DDM) [18]. Since ADWIN is more tolerant of various drift types (such as concept drift, covariate 

drift, and others) compared to the remaining methods [19], we employ ADWIN as our primary method for 
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detecting data distribution shifts. Essentially, the ADWIN method utilizes sliding windows of variable sizes 

based on observed data changes. When the difference between the statistics within these windows, such as 

the mean of the observed data window, surpasses a predetermined threshold, it indicates the detection of a 

data distribution drift. Figure 3 illustrates how ADWIN operates, with the red lines denoting data sample  

 

 

Figure 3: An example output of ADWIN method. 

indexes at which distribution shifts are detected. One of the features in the training dataset is the "Price" 

attribute, which is described in more detail in section 4.  

When the data distribution shift is detected, the data 𝑿𝒕 is store in the relay buffer. The relay buffer retains 

samples that exhibit a probability distribution shift in the data stream and uses them as inputs for retraining 

the model when model updates are triggered. Conversely, the sampling buffer stores data with a distribution 

similar to the old data 𝑿𝒕′. The data in the sampling buffer is employed to preserve previous knowledge for the 

updated model. A continually learning energy bidding model can be seen as an accumulation of knowledge 

aimed at enhancing prediction performance. It's important to note that the relay buffer has a finite size, 

whereas the sampling buffer is designed to be larger compared to the relay buffer. 

3.3 Output Distribution Shift Detection 

Even if data 𝑿𝑡 exhibits a similar distribution to the previous data 𝑿𝒕′, there is still a chance that the model's 

performance may significantly deteriorate if the data input 𝑋𝑡 contains noise. For instance, this could occur if 

essential attributes are missing due to errors in the data collection process, leading to prediction shift issues. 

Therefore, it is crucial to inspect the prediction output to ensure that prediction shifts are effectively managed.  

Given the prediction output 𝒀̂𝑡  the framework assesses the model's performance using the following 

Supply-Demand Equilibrium (SDE) equation: 

𝑆𝐷𝐸(𝒀̂𝒕) = |∑ 𝑦𝑖
𝑜𝑓𝑓𝑒𝑟𝑠 ∗ 𝑞𝑖

𝑜𝑓𝑓𝑒𝑟𝑠

𝑚

𝑖=1

− ∑ 𝑦𝑗
𝑏𝑖𝑑𝑠 ∗ 𝑞𝑗

𝑏𝑖𝑑𝑠

𝑘

𝑗=1

| 

where 𝑦𝑗
𝑏𝑖𝑑𝑠and 𝑦𝑖

𝑜𝑓𝑓𝑒𝑟𝑠 ∈ {0,1} are elements of vectors output 𝒀̂𝒕, represent bidding decisions corresponding 

to a sequence of bidding and offer transactions in the input 𝑿𝒕. Meanwhile, 𝑞𝑗
𝑏𝑖𝑑𝑠and 𝑞𝑖

𝑜𝑓𝑓𝑒𝑟𝑠
 denote the power 
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quantity of the bidding and offer transactions, respectively, acquired from the data input 𝑿𝒕. Detailed input 

attributes are further described in section 4. It is important to note that 𝑚 + 𝑘 = |𝒀̂𝒕|. The value of 𝑆𝐷𝐸(𝒀̂𝒕) 

serves as an indicator of the supply-demand balance once the bidding decisions are determined by the 

prediction model. 

Subsequently, 𝑆𝐷𝐸(𝒀̂𝒕) is compared to a threshold 𝜀𝑞𝑢𝑎𝑙𝑖𝑡𝑦, which is denoted by: 

 𝜀𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = argmax
𝑡′∈𝐷𝑡𝑟𝑎𝑖𝑛

(𝑆𝐷𝐸(𝒀̂𝟏), … , 𝑆𝐷𝐸(𝒀̂𝒕′)), 

where the value of  𝜀𝑞𝑢𝑎𝑙𝑖𝑡𝑦 establishes the boundary for the quality of an energy bidding prediction output. If 

𝑆𝐷𝐸(𝒀̂𝒕) < 𝜀𝑞𝑢𝑎𝑙𝑖𝑡𝑦, the current input 𝑿𝒕 is stored in the sampling buffer; otherwise, it is stored in the relay 

buffer. The threshold 𝜀𝑞𝑢𝑎𝑙𝑖𝑡𝑦 value is adjusted after each model update, based on the new data used for 

retraining the model. 

3.4 Adaptation  

This component plays a crucial role in the CLEB framework by retraining the model to adapt to the non-

stationary data stream within the dynamic environments of the energy bidding application. As mentioned 

earlier, we employ a relay-based continual learning approach that utilizes a small portion of old data (i.e., data 

with a distribution similar to what is learned by the current model at time 𝑡) along with newly acquired data 

(i.e., data with distribution shifts or noise) to update the model. This strategy is considered a suitable method 

for the energy bidding prediction task, addressing distribution shifts and mitigating catastrophic forgetting. It 

allows the model to acquire new knowledge without forgetting past knowledge. Once the model update is 

completed, it replaces the current model with the latest version, ℎ𝜃∗𝑢𝑝𝑑𝑎𝑡𝑒
. 

It's important to note that, since the energy bidding application in this work doesn't have access to ground-

truth labels in practice, unlike other applications such as recommendation systems or energy load forecasting, 

we rely on a heuristic-based labeling technique (i.e., the electricity market clearing process), as mentioned in 

[20], to label the data in the relay buffer before retraining the model. Other labeling methods fall outside the 

scope of this work but could be subjects of further research in the future. 

4 EXPERIMENT 

4.1 Dataset 

To conduct an empirical study, we have considered a total of four electricity datasets from the Spain market, 

as outlined in Table 1. 

Table 1: Summary table of the considered datasets 

Dataset Name Description 

OMIE Submitted Bids [21] Include bids/offers submitted to an electricity market operator in 

the continuous intraday market for Spain. 

OMIE Transactions Made [21] Contain successfully matched pairs of bids and offers in the OMIE 

Submitted Bids dataset. 

ENTSOE Energy Consumption & Generation [22] Consist of electrical consumption, generation, and weather data 

for Spain. 

ESIOS Energy Market Price [23] Include the electrical market price for Spain. 



8 

All four datasets span a 1-year period, from January 1, 2019, to December 31, 2019, and are organized 

based on hourly intervals. From the first two datasets presented in Table 1, we extracted the ground-truth 

labels for each bid and offer transaction, indicating whether they were accepted or rejected. Subsequently, we 

merged this dataset with attributes selected from the ENTOSE and ESIOS datasets, including total energy  

 

Figure 4: The fourth subfigures illustrate the data distribution shift generated to Price, Quantity, Forecasted Load, and Total 

Generation attributes, respectively. 

generation (supply), forecasted load consumption (demand), and energy market prices, ensuring time 

synchronization. The final dataset, denoted as 𝐷, comprises over 5 million trading transaction samples and 

includes 16 attributes, with key attributes listed as follows: 

• Price (€/MWh):  This refers to the price at which a utility supplier or industrial consumer is willing to sell or 

buy a certain quantity of electricity during a specific period. 

• Quantity (MW): This indicates the amount of electricity that market participants are willing to buy or sell at 

a specific price during a particular period.     

• Energy Generation (MW):  This pertains to the total amount of electrical energy generated within a 

specific region, country, or system over a given period. 

• Forecasted Load Consumption (MW): This represents forecasts of expected electricity consumption or 

demand within a specific region, country, or electrical system over a defined time period.  

• Energy Market Price (€/MWh): This refers to the price at which electricity is bought and sold in the 

electricity market in Spain. 

4.2 Synthetic Dataset 

To simulate the data distribution shift scenario, we created a synthetic dataset with the goal of altering the 

probability distribution of numeric columns in dataset 𝐷 at specific points. The underlying generation of the 

synthetic dataset is shown as follows: 

𝑿𝑡(𝑛)~𝑁(𝑚𝑒𝑎𝑛𝑡(𝑛) + 𝛼, 𝑣𝑎𝑟𝑡(𝑛) ∗ 𝛽) 
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where 𝑿𝑡(𝑛) is sampled from a Gaussian distribution with a time-dependent mean and variance, representing 

the 𝑛th attribute of sample 𝑿𝑡 in the dataset 𝐷. The result of synthetic dataset 𝐷𝑠𝑦𝑡ℎ𝑒𝑡𝑖𝑐 for each attribute are 

displayed in Figure 4.   

In total, we divided the original dataset 𝐷 into training (80%) and testing (20%) sets, denoted as 𝐷 =

𝐷𝑡𝑟𝑎𝑖𝑛 ∪ 𝐷𝑡𝑒𝑠𝑡. For the data distribution shift scenario, we combined a portion of samples from 𝐷𝑡𝑒𝑠𝑡 with a with  

 

 

Figure 5: The performance of the CLEB framework when a distribution shift occurs, without taking the concept of CL into 

account. 

a segment of samples from the synthetic dataset 𝐷𝑠𝑦𝑡ℎ𝑒𝑡𝑖𝑐 , aligning them with continuous timestamps, 

resulting in what we refer to as 𝐷𝑡𝑒𝑠𝑡
𝑠𝑦𝑡ℎ𝑒𝑡𝑖𝑐

. 

4.3 Metrics 

Since the energy bidding prediction is considered as classification task, we employ the Jaccard score to 

measure the accuracy performance 

𝐽𝐴𝐶(𝑿) =
1

𝑛
∑

𝑇𝐿(𝑿𝑖)∩𝑃𝐿(𝑿𝑖)

𝑇𝐿(𝑿𝑖)∪𝑃𝐿(𝑿𝑖)

𝑛
𝑖=1  , 

where 𝑇𝐿(𝑿𝑖) represents the true label set of 𝑖th input sample 𝑿𝑖, and 𝑃𝐿(𝑿𝑖) refers to the predicted label set 

of 𝑖th input sample 𝑿𝑖. A higher value of this evaluation metric indicates better model performance. 

4.4 Result 

Figure 5 illustrates the accumulated daily accuracy performance of the CLEB framework using 𝐷𝑡𝑒𝑠𝑡
𝑠𝑦𝑡ℎ𝑒𝑡𝑖𝑐

 as 

data streaming input. We can observe that, starting from December 1, 2019, the model's performance 

undergoes a significant degradation. The cause of this decline is the detection of a data distribution shift. If the 

model is not updated, its performance steadily deteriorates. 
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On the other hand, Figure 6 demonstrates that the performance of the CLEB framework experiences a 

remarkable improvement through the utilization of continual learning methods. As the performance degrades 

suddenly, the CLEB framework starts recording samples that indicate a distribution shift in the relay buffer. 

When the relay buffer is full, the adaptation component shown in Figure 2 is triggered to retrain the model 

using the relay-buffer continual learning strategy. The newly trained model, once retraining is complete, is  

 

 

Figure 6: The performance of the CLEB framework when a distribution shift occurs, considering the concept of CL. 

deployed to perform model inference for new incoming sequence data. Since the updated model has learned 

new data distribution patterns, it quickly enhances accuracy performance. 

5 DICUSSION 

The outcome of experiments showed that the performance of the relay-based continual learning strategy 

depends on the size of the buffers. If the size of the buffer is larger, the CLEB requires a longer time to reflect 

changes in data distribution, as the retrain process is only invoked when the buffer is full, and vice versa. 

Therefore, the optimal buffer size is also considered a factor that affects the efficiency of the proposed 

method. This generates a need for modeling the buffer size adaptively, allowing the buffer size to adjust itself 

during the continual learning process by observing the circumstances. 

Due to the absence of preliminary experiments on a dataset related to continual learning-based energy 

bidding, a direct comparison of our experiment results with those of other studies is not feasible. 

Consequently, the outcomes of our experiments and the performance metrics for energy bidding are 

exclusively based on the utilization of a synthetic dataset and algorithms tailored specifically for this research. 

Several challenges had to be overcome to implement this study. One of the main limitations is labelling 

data stored in the relay buffer due to limited information on bidding constraints, such as regulations, policies 

(i.e., renewable energy quotas), or capacity constraints (i.e., the maximum amount of energy that can be bid 
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or generated within a specific time frame) in the Spanish market. Since the quality of the supervised-based 

learning model depends on the quality of labels, the results of the experiment may not fully reflect the 

applicability of continual learning to bidding decisions in case a data distribution shift occurs. Additionally, the 

artificial dataset generated to demonstrate the concept of continually learning algorithms in this study is not 

generalizable in practice, which might necessitate starting our experiments from scratch for different energy 

bidding datasets.  

 

6 CONCLUSION 

We propose the CLEB framework, which is designed to enhance the performance of the energy bidding 

decision model under non-stationary data streams using the relay buffer continual learning strategy. The 

CLEB framework monitors the data stream to detect changes in probability distribution using the adaptive 

sliding window method, namely ADWIN. All samples that cause a distribution shift are stored in the finite relay 

buffer. When this buffer is full, the adaptation component is invoked to update the model using the data stored 

in the relay buffer. The experimental results illustrate that the CLEB framework enables the prediction model 

to adapt itself to uncertain conditions in the energy bidding application. 

However, the framework can be further improved in our future research. For instance, data distribution 

shifts in practice may exhibit various types, and it is necessary to propose a new approach for effectively 

detecting distribution shifts with low detection delay and high precision. The labeling technique is also of 

importance to explore further since it impacts the performance of model retraining. Additionally, rigorous 

experiments are required to evaluate the performance of the CLEB framework in terms of forgetting ratio. 

Moreover, conducting more ablation experiments is necessary to simulate and identify the impact of 

thresholds on overall performance. 
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