
Research Issues in the Development of Context-aware Middleware Architectures

Hung Quoc Ngo, Anjum Shehzad, Kim Anh Pham Ngoc, S. Y. Lee, Manwoo Jeon
Real Time & Multimedia Lab, Kyung Hee University, Korea
{nqhung, anjum, anhpnk, sylee, imanoos}@oslab.khu.ac.kr

Abstract

Context-aware middleware encompasses uniform
abstractions and reliable services for common operations,
supports for most of the tasks involved in dealing with
context, and thus simplifying the development of context-
aware applications. In this paper1, we address some key
issues of a middleware for context-aware ubiquitous
computing, ranging from design considerations of a
unified sensing framework, formal modeling and
representation of the real world, pluggable reasoning
engines for high-level contexts, and context delivery-
runtime service composition mechanisms. Our
implementation experience indicates that a
comprehensive approach throughout the system layers
results in a flexible and reusable middleware
architecture.

1. Introduction

Context-aware ubiquitous computing emphasizes on
using context of users, devices, etc. to provide services
that are appropriate to particular person, space and time.
Different approaches have been proposed for building
context-aware applications and services. The Context
Toolkit developed by Anind Dey et al [1] provides a
number of reusable components to support rapid
prototyping of certain types of context-aware
applications. Besides the Toolkit approach, middleware
infrastructures have been proposed [2], [3], [4] [5]
encompassing uniform abstractions and reliable services
for common operations, support for most of the tasks
involved in dealing with context, and thus simplifying the
development of context-aware applications. While
different in approach, all infrastructures have the same
goal of gathering environmental features and transforming
them into deliverable context. The tasks involved in such
systems can be generalized as sensor data aggregation and

1 This research was supported by Ministry of Commerce, Industry and
Energy, Korea.

fusion, context reasoning, and context delivery
mechanisms.

We have proposed a Context-aware Middleware for
Ubiquitous Computing Systems (CAMUS [6], [7]) to
address the discussed issues. This paper presents our
development experience in CAMUS, focusing on the key
characteristics of a context-aware middleware in order to
be successfully deployed in real environment. Section 2
briefly describes the functional overview of CAMUS. The
design considerations of a Unified Sensing Framework
are provided in section 3. Issues in developing Context
Repository and Context Reasoning are discussed in
section 4 and section 5 respectively. Section 6 describes
the Context Delivery and Runtime Service Composition
Mechanisms. Section 7 concludes the paper with an
analysis of our middleware architecture and future
directions.

2. Functional Overview of CAMUS

Figure 1. CAMUS Core Architecture

Our middleware architecture (depicted in figure 1)

provides supports for gathering context information from
sensors in a unified manner, incorporating different
reasoning mechanisms for deducing high-level context,

and delivering appropriate contexts to applications as well
as notifying the applications on context changes. More
detailed definition and description of each functional
module can be found in [6].

3. Design Considerations for Unified Sensing
Framework

Ubiquitous environments contain diverse range of

sensors each utilizing its native access mechanisms and
output formats. This leads to potential problems and
complexity in system design and implementation. The
middleware needs to facilitate the device integration and
information extraction from heterogeneous sensors, and
present to the upper layers for deducing contexts in a
standardized and unified manner.

CAMUS provides a software abstraction for sensing
devices, namely Feature Extraction Agents (FXA), to hide
the sensor technologies (i.e. low level communication
details and specific processing algorithms of sensory
data,) and expose to upper layers with a Unification
Interface [8]. The feature extraction agents also hide the
heterogeneity of outputs from disparate sensors, by
encapsulating the features extracted from sensors in a
common data structure of feature markup format [6].

With the abstraction of sensing agents, CAMUS lets
developer deploy any type of sensors by implementing the
native drivers for communicating with the sensor
hardware; incorporating specific algorithms from domain
experts for extracting and quantizing the most descriptive
features from raw sensor data to get their semantic
meanings; and providing the meta-data describing that
Feature Extraction Agent. This solution enables a
dynamic mechanism for mapping between the real world
information and the virtual world of context
representation. For example, when a new RFID tag is
attached to an object, the developer just needs to append
new information describing this tag (e.g. the name of the
object carrying the tag) to the meta-data file of the RFID
Readers, and no modification of the sensing modules is
needed.

4. Context Repository & Query

Context Repository provides the basic storage services

in a scalable and reliable fashion and contains the Domain
Ontology and Context Information along with Meta-
information.

4.1 Formal Context Modeling and Representation

In ubiquitous computing environments, applications
need a shared understanding of context to communicate
and transfer context effectively among them. This issue

leads us to think of a formal context model for efficient
utilization of context Based on different entities e.g.
PDAs, mobile phones, ambient displays, sound intensity,
light, temperature, traffic, software agents, persons,
groups etc, we categorize them, in our framework, mainly
into agents, devices, environment, location and time [6],
[7]. OWL [9] is used for formal modeling of context since
it allows us to define concepts and their inter-relationships
e.g. describing person, devices, location etc., and to define
instance data pertaining to some specific time and space,
besides providing advantages of expressiveness,
knowledge sharing, logic inference, knowledge reuse, and
extensibility [9].

4.2 Domain Specific Data Model

A ubiquitous computing system may consist of many

collaborative subsystems running on various domains
such as home domain, office domain, university domain,
etc. The use of ontology can help sharing the knowledge
among different domains and systems. However, such a
distributed and dynamic environment requires an efficient
mechanism to store and retrieve context data over multi-
domain repository. As CAMUS uses OWL format to store
context data, it maintains a meta-graph to manage the
meta-data about all the domain repositories. Using OWL
format, the Context Repository can be backed by some
kinds of DBMS such as MySQL, or just use text files if
the system needs to run on some resource-constrained
environment. When handling OWL data using Jena
library [10], each database can be considered as a group
of models, where each model is a collection of contexts.
The ontologies defining context data schemas have
hierarchical structure, so each context data model itself is
a sub-graph of the large graph combining all the
ontologies. Consequently, it is feasible to build a meta-
graph of all graphs in a ubiquitous environment. That
meta-graph stores the information about the models of
each domain, names and namespaces of the models, and
especially the contexts provided by each model in a
hierarchical structure. Context data can be retrieved by
RDQL [11] queries. The queries are parsed into list of
condition triples. Then the contexts mentioned in
condition triples are used to search all the models which
can provide those contexts from the meta-graph. After
that, for each concerned model, all the related statements
are extracted using the template statement built from the
condition triples. Jena library allows us to integrate many
statement sets into one model before executing the query.
Because each Context Repository Manager module runs
as a service, it can advertise itself as well as discover
other Repository Manager services. Whenever it
discovers a new repository, it will integrate the meta-
graph of the new repository in its own meta-graph.

5. Context Reasoning

A middleware infrastructure needs to provide support
for incorporating different reasoning mechanisms into the
system, as well as easily specifying the appropriate
mechanism for reasoning each high-level context. This
will facilitate not only the system internal modules to
infer high-level context from low-level or predefined
contexts, but also the applications to reason for their own
application-specific context. A well defined set of
Reasoning Engine APIs makes it possible to add and
handle different reasoners as pluggable modules but, in
return, it requires huge effort to come up with a uniform
structure for different reasoning mechanisms.

The following piece of code illustrates how to add and
invoke a rule-based reasoner in CAMUS, by declaring the
rule file name and some namespace abbreviations:

/* declare the prefixes for namespaces */

ContextReasonerManager.registerPrefix ("conagnt",
rtmm.camus.vocabulary.contel.Agent.NS);
ContextReasonerManager.registerPrefix ("env",
rtmm.camus.vocabulary.contel.Environment.NS);
ContextReasonerManager.registerPrefix ("conloc",
rtmm.camus.vocabulary.contel.Location.NS);

/* add a new reasoner providing the rule file */
ContextReasonerManager.addReasoner ("Location",
ReasonerType.GENERIC_REASONER,
"etc/contel.rules");

/* declare some statements */
sms = new ContextStatement [] {PastLocationDescription,
hasLocation};

/* invoke the reasoner to do reasoning, providing the reasoner
name, the context data name and the required statements */

cdm.invokeReasoning ("Location", "Data", sms);

In CAMUS, the ContextReasonerManager manages all
the reasoners in the system through a unified interface
ContextReasoner (the class diagram of Reasoning Engine
is omitted due to space limitation.) All the reasoners will
implement this interface. The ContextReasonerManager
service can be called to addReasoner(), get an existing
Reasoner, and then do reasoning by invokeReasoning().
Developers just have to compose the rule sets, and decide
the context data which should be used, and the
middleware will take care of all other work from creating
the reasoner to inserting the new inferred data into the
repository.

6. Context Delivery & Aggregator Services

The main motivation behind context delivery services

in CAMUS is two fold:
• Provide a discovery and registration mechanism

which can utilize the underlying contextual
information’s syntax as well as semantics in order

to make more intelligent and accurate context
service selection

• Incorporate dynamic and autonomous access-
control mechanisms in the context delivery process
to ensure privacy and overall integrity of the
system

Keeping in view the requirements of the context
delivery service and the representation scheme of the
underlying data model for context, semantic web concepts
for matchmaking [12] along with support for dynamic
composition of context-aware services is being
developed.

The services (context aggregators) utilize the
registration interface to make their information known to
the applications. Lookup interface enables the
applications to find appropriate matching context
providers. Policies/rules database contains the system
level policies as well as optional aggregator services level
policies and rules defining the requirements or conditions
to access some specific service provided by the context-
aware middleware. This process is handled by the access
control module. The matchmaking module matches the
appropriate service with the client provided the access
control policies are not violated. Further details of this
module can be found in another paper [13].

Runtime Composition. Composition of services is
basically used in the workflow management systems such
as [14]. The idea is very powerful and applicable to
context-aware ubiquitous computing services when the
context requested by user is not provided directly by
single service but can be composed by combining several
services in a flow. Since semantic matchmaking is being
employed at the delivery service, we register service
along with quantitative and qualitative semantics of its
interface. Quantitative semantics is related to context
service specification i.e. service name,
operations/methods provided by the service through its
exposed interface along with the inputs, outputs and
exceptions of those methods, while qualitative semantics
are dealt with excellence of the service i.e. its execution
time, context freshness, reliability and availability
semantics. An optional hardware used attribute can be
used to show which hardware was used to gather the
elementary context, e.g. location can be got by using with
RFID, iButton, or even simple WLAN. Once context
service is fully described (both quantitative and
qualitative semantics), it can be then registered with the
broker service. E.g. if the client is interested in user
location and it is willing to provide user URI and
expecting Location in terms of GPS location, then it can
be defined roughly as:

Domain (CT) = Location Provider Service
Ontological class of required operation = UserLocation
Ontological class of required input = URI
Ontological class of required output = GPSLocation

Context Freshness < 5 Sec
Hardware Used = RFID || iButton
In this way, the client specifies its requirements in

more expressive way and there are more chances to find
suitable service as compared to simple search based on
keywords.

7. Analysis and Future Work

The benefits of using unified sensing framework

approach are two fold. Firstly it provides the separation of
concerns, that context modeling and reasoning
mechanisms can be developed independently with sensing
technologies. Secondly, the use of features allows better
description of different environment parameters than raw
sensor values and features can be organized, stored and
delivered in an efficient manner. For permanent storage of
context data, OWL data is converted into relational
DBMS by using the Jena framework API. This has certain
performance limitations which made us believe the
database storage schemes especially for OWL should be
investigated along with different efficient query
mechanisms to retrieve stored data. Similarly, providing
different reasoning mechanisms to infer higher level
demands a uniform data structure to incorporate
information required by different reasoning engines.
Applying some data mining and AI techniques into
middleware is being developed in CAMUS, e.g. from the
historical information of user location, user activity, the
environment features, combined with user profile, some
data mining algorithms can be used to mine the
association rules which describe user preferences or user
routine. Another example is that we can build the decision
trees to predict future actions of user. Also, incorporating
access control requires a lot of information inflow on
behalf of the applications i.e., the applications are
required to provide some credentials to match the
policies. This process might be slow in case some mobile
user just wants to retrieve general information e.g.,
weather, light conditions, humidity, goods available in the
market etc from the context-aware system which are not
subject to privacy constraints. In such scenarios, policies
can be written to grant unhindered access to services that
provide such contextual information. However, there is
also a need to carefully define the data structure to
represent policies and semantics so that the representation
scheme facilitates these mechanisms. Concerns like
dynamic policies, granularity of access control, coping
with runtime police changes and providing certain level of
trust of users can be dealt if autonomic access control
techniques (out of scope of this paper) are employed in
context delivery.

To summarize, important elements that comprise
middleware for context-aware ubiquitous computing have
been discussed. Context sensing, modeling and

representation, context repository and query, pluggable
reasoning modules, aggregators and delivery services, and
runtime composition, are all required components for a
comprehensive context-aware middleware solution. The
intermingling of all these components is necessitated to
spotlight a comprehensive solution. Following a
systematic approach makes CAMUS a flexible and
reusable middleware framework.

References

[1] Context Toolkit project, http://www.cs.berkeley.edu/~dey/-
context.html
[2] Hong, J. I., et al., “An Infrastructure Approach to Context -
Aware Computing”, HCI Journal, 2001, Vol. 16.
[3] Guanling Chen and David Kotz., “Solar: An Open Platform
for Context –Aware Mobile Applications”, Proceedings of the
First International Conference on Pervasive Computing
(Pervasive 2002), Switzerland, June, 2002.
[4] Anand Ranganathan, Roy H. Campbell, “A Middleware for
Context -Aware Agents in Ubiquitous Computing
Environments”, ACM/IFIP/USENIX International Middleware
Conference, Brazil, June, 2003.
[5] Harry, C., Finin, T., and Joshi, A.: An Intelligent Broker for
Context-Aware Systems. In: Ubicomp 2003, Seattle,
Washington. (Oct. 2003)
[6] Hung, N.Q., Shehzad, A., Kiani, S. L., Riaz, M., Lee, S., “A
Unified Middleware Framework for Context Aware Ubiquitous
Computing”, EUC2004, Japan, Aug. 2004.
[7] Anjum Shehzad, N. Q. Hung, Kim Anh Pham, Sungyoung
Lee, “Formal Modeling in Context Aware Systems”, Workshop
on Modeling and Retrieval of Context, CEUR, ISSN 613-0073,
Vol-114, 2004.
[8] Saad Liaquat Kiani et al., “A Distributed Middleware
Solution for Context Awareness in Ubiquitous Systems”,
accepted for publication, RTCSA 2005, HongKong.
[9] W3C Web Ontology Working Group, “The Web Ontology
language: OWL”, http://www.w3.org/2001/sw/WebOnt/
[10] “Jena: A Semantic Web Framework for Java”,
http://jena.sourceforge.net/
[11] Andy Seaborne, “RDQL – A Query language for RDF”,
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
[12] Trastour, D., Bartolini, C., Gonzalez-Castillo, J., “A
Semantic Web Approach to Service Description for
Matchmaking of Services”, HP Labs Bristol, HPL-001-183,
2001.
[13] Maria Riaz, et al., “Service Delivery in Context Aware
Environments: Lookup and Access Control Issues”, accepted for
publication, RTCSA 2005, HongKong.
[14] F. Casati, S. Ilnicki, L. J. Jin, V. Krishnamoorthy and M. C.
Shan, “eFlow: a Platform for Developing and Managing
Composite e-Services”, HP Laboratories Palo Alto, HPL-2000-
36, March 2000.

