
A Distributed Middleware Solution for Context Awareness in Ubiquitous
Systems

Saad Liaquat Kiani, Maria Riaz, Yonil Zhung, Sungyoung Lee, Young-Koo Lee
Real Time and Multimedia Lab, Kyung Hee University, Kihung, Yongin, 449-701, South Korea

{saad, maria, zhungs, sylee, yklee}@oslab.khu.ac.kr

Abstract

Context aware middleware infrastructures have

traditionally been implemented with a modular
approach to allow different components to work
cooperatively and supply context synthesis and
provision services. In this paper, we discuss the
important requirements that arise when such a
middleware is deployed in a distributed environment
and present the design and implementation of
Context Aware Middleware for Ubiquitous Systems
(CAMUS1) with which the authors have attempted to
meet those requirements. Issues related to distributed
coordination within the middleware in terms of
component discovery and management and multiple
context domains are also discussed.

1. Introduction

Different approaches have been proposed for
building context-aware applications and services.
Anind Dey et al [1] have built a Context Toolkit to
support rapid prototyping of certain types of context-
aware applications by providing a number of reusable
components. Besides the Toolkit approach ([2], [3]),
middleware infrastructures have been proposed [4],
[5], [6] encompassing uniform abstractions and
reliable services for common operations, support for
most of the tasks involved in dealing with contexts,
and thus simplify the development of context-aware
applications.

The authors have proposed a Context Aware
Middleware for Ubiquitous Computing (CAMUS) to
address the discussed issues. The details of CAMUS
middleware architecture with respect to context
synthesis and data procurement have been adequately
discussed in [7]; in this paper we will focus our

1 This work is supported in part by the Korea Science and

Engineering Foundation (KOSEF)

discussion of CAMUS towards the distributed nature
of the infrastructure, coordination and management
aspects. Sec. 2 presents the overview of the CAMUS
and is diagrammatically depicted in Fig. 1. Sec. 3
lists the issues which render a distributed middleware
approach necessary for implementation and
deployment of the middleware. The design
considerations for the coordination framework which
lead to a service oriented design are explained in Sec.
4. Prototype implementation’s overview is given in
Sec. 5 and the discussion is concluded in Sec. 6.

2. Functional Overview of CAMUS

The CAMUS architecture is provides context

aware services after undergoing four steps including
sensor access, feature extraction, context synthesis
and delivery. Fig. 1 shows the core CAMUS
components that individually handle these tasks.

Figure 1. CAMUS middleware architecture
modules mapped into 4 separate functions

The lowest layer of CAMUS consists of a Sensor

Access Module (SAM) which provides unified access
to hardware sensors. SAM provides a Hardware

Abstraction Layer (HAL) which masks the
heterogeneity of the environment sensors from the
upper layers of the system. It provides a sensor driver
API which allows native sensor drivers to be used to
access the sensors in a unified manner.

Feature extraction agents (FXA) are sensing
agents that extract the most descriptive features from
the sensors through the SAM. The quantized features
are encapsulated in the form of a ‘Feature Tuple’ and
stored in Feature Tuple Spaces (FTS). Feature Tuple
Space (FTS) is employed as underlying storage
mechanism. Various sub-modules for feature
extraction and context formation dynamically interact
in the middleware by mere flow of objects in and out
of the FTS. Current FTS implementation in CAMUS
is done on top of IBM TSpaces [8] with extended
read, write methods and customized events.

Feature - Context mapping layer performs the
mapping required to convert a given feature into
elementary context using reasoning mechanisms [7]
and base on the meta-information saved in the
ontology repository. Ontology Repository provides
the basic storage services in a scalable and reliable
fashion and contains the domain ontology (concepts
and properties), contextual information (including
both elementary and composite contexts), and meta-
information. Reasoning Engine is a collection of
various pluggable reasoning modules to handle the
facts present in the repository as well as to produce
composite contexts. Context Aggregator is
responsible for satisfying certain context queries and
providing context to interested applications through
Context Delivery Services.

3. The Case for Distributed Middleware

Most of the current context aware systems that

have been prototyped are limited to providing context
at a small physical scale e.g. a campus environment
[9], a laboratory, a home etc. At such a scale, the
problems of a distributed environment do not present
themselves adequately since the sensors are confined
to a limited space (allowing easy sensor
management), the context synthesis and delivery
services run on a single system, system contact points
are known [1] and dynamic discovery of system
services is not required. In a practical scenario, an
effective context aware system will provide context
services over a vast stretch of environments ranging
from homes, campuses, market places to city blocks
and larger precincts. To manage such extended
spaces it is necessary to separate the overall
environment into smaller logical domains and

incorporate a robust coordination and management
framework as dictated by following reasons:
 The limitation in the communication range

of most sensors makes it necessary for input
gathering software components to exist in physical
proximity to the sensors. Since sensors are diversely
deployed in a ubiquitous environment, multiple input
gathering components of a context aware system
require coordination and management for data
procurement.
 The complexity involved in context

synthesis may require special computing devices for
efficient performance e.g. a dedicate cluster of
workstations set aside for context synthesis of all the
entities registered with the system.
 Employing a single system to manage

context synthesis and delivery for a large
environment consisting of many sub-domains can be
performance limiting. It is best that the whole
environment is segregated into separate logical
domains and clone sub-systems handle the steps
involved in the context delivery process in each
domain individually.

In order to carry out these varying specialized
tasks and incorporate a considerably large number of
hardware and software clients and contributors, a
distributed setup becomes inevitable. In CAMUS,
following requirements for coordination arise when
functionality is distributed amongst components on
specialized systems.

3.1. Logical and Physical Separation

The foreseeable problem that is related to

heterogeneous sensors deployed in the environment
is the limited communication range of sensors e.g.
RFID, infrared, blue-tooth radio enabled sensors. It
implies that the software components responsible for
managing the sensors and retrieving measurements of
environmental parameters have to be located in
proximity to the sensors. With the distribution of
sensors being wide and sparse, deployment of access
components close to sensors becomes difficult and
can by overcome by more than one access module to
cover the set of sensors exhaustively and combining
their results for context generation later on.

Since an entity’s context is an interpreted result
from a collection of features, it cannot be derived
from a single sensory source. This constraint
necessitates that such intermediate data is placed in
storage till adequate information sources contribute
and reasonable context can be inferred. In CAMUS,
this underlying storage mechanism for data acquired
from sensors is the FTS as discussed in Sec. 1 and

provides a domain-wide persistent space. Instead of
multiple sensor access modules storing the procured
data in a single, central repository, it serves the
performance requirements best that multiple localized
repositories are used in conjunction with multiple
sensors access modules. This not only reduces the
communication delays but also provides a load
balancing mechanism.

3.2. Context Domains

Ubiquitous computing environment is

characterized by various domains e.g. home, office,
university etc. To formally model context
information to represent a particular domain,
individual components need to be affiliated with a
specific domain to relate coherent environments and
entities, and to confine them within a logical
boundary. Instead of employing a single context
synthesis component to interpret context on behalf of
all entities, the concept of separation of concerns
based on geographical or logical boundaries has been
implemented in CAMUS where individual domains
are responsible for context management within
domain boundaries as shown in Fig. 2.

Figure 2. A scenario where components are

associated with a single domain at a time

4. Service Oriented Approach to
Middleware Coordination

CAMUS coordination sub-system is based on

Service Oriented Architecture (SOA) [10] where core
components are distributed services residing on the
network to be published, discovered and invoked by
each other. It allows a software programmer to model
programming problems in terms of distributed
services offered by components to anyone, anywhere
over the network. To implement CAMUS
architecture based on SOA, several existing
technologies were investigated including Web
Services, Java RMI, Jini [11], UPnP and CORBA;
which are capable of, to one extent or another,
satisfying the stated requirements. Web services and

Jini are notable implementation of SOA and for
reasons stated in Sec. 7, Jini technology was found to
be the closest match to our requirements.

The discovery and registration process among
modules is facilitated by Jini while the internal
working of each module is independent of the
underlying coordination mechanism.

4.1. Registration Mechanism and Formation
of Domains

When a component becomes available, it joins a

specific domain by registering the attributes and
capabilities it affords along with a downloadable
proxy with a service registry, specifically a Jini
Lookup Service (LUS). Other components can
discover the service by looking up specific attributes
they are interested in. When the module of interest
becomes available, its proxy is downloaded from the
registry and is used for communicating back and
forth between components.

The attributes published by components vary from
basic properties such as name, service type, location,
and status to specialized capabilities of the module
for more specific lookup provision. Components can
specify the location during lookup operations so they
can locate other components (FTS in this case) in
their proximity. Similarly, queries can be further
restricted to domains memberships, e.g. an FTS
belonging to ‘University’ domain may search only
for SAM instances located in that domain.

4.2. Scalability

In a scenario where system users increase in

number or the system has to manage a larger area
equipped with a greater number of sensors, sudden
changes and unpredictability in system configuration
becomes inevitable leading to an increase in the
responsibility of system components which may
serve as a performance penalty. To meet this
challenge at runtime, one of the solutions is to
increase the number of system components handling
the tasks that now offer an increased workload. In
CAMUS, an increase in the number of sensors in a
domain can be accommodated by the deployment of
additional sensor access modules and/or feature tuple
spaces as shown in Fig. 3. Efficient coordination
amongst components requires that the increase in
number of components does not hamper the
discovery and registration process. For this purpose,
multiple lookup services handling the task of
discovery and registration are federated and the
clients’ (middleware services) queries are distributed

across a number of lookup services to balance the
load on the system and thus avoiding bottlenecks.

Figure 3. A hypothetical organization provides

city wide context delivery service

5. Implementation Overview

The authors have implemented the CAMUS

middleware infrastructure using Java and the
coordination infrastructure is based on Jini
technology. Individual components of CAMUS are
deployed as services and their responsibility is
limited to logical domains. After individual startup of
core components, the middleware self configures
itself to form a domain. A collection of drivers for
sensors (audio, video (facial recognition), RFID tags
and readers, Mote Kit sensors including light
intensity, temperature and humidity sensors) and
feature extraction agents have been made available as
Java jar files. This collection of sensors and their
respective feature extraction agents have been used to
prototype a number of context aware applications,
e.g. the well known meeting room scenario where
presence of sufficient participants is detected by the
system through sensor information, presentation
material is distributed to their devices, actuators are
used to dim room lights, presentation is projected and
room temperature is kept to an optimal level.

6. Conclusion

The functionality of the components in the
CAMUS system is independent of the discovery,
registration and coordination scheme. A discovery
and registration module is attached with each
component which enables them to announce and

locate each other. These services keep track of all the
available service registries present in a given domain
and facilitate the process of registration and
discovery. This decoupling of the functionality from
the communication scheme leverages flexibility to
update or replace the components without affecting
the communication infrastructure.

Jini was found to be the closest match to the
specific requirements of our system. Particularly, the
possibility of querying components by attributes,
downloadable proxies and independence from
transport protocol were the main support features
which were found lagging in other similar
technologies such as UPnP. Moreover, the
advantages of leasing, remote and distributed event
notification model and event mailboxes provided by
Jini can be utilized to full extent in a distributed
middleware architecture as CAMUS.

References

[1] Dey, A.K., et al.: A Conceptual Framework and a
Toolkit for Supporting the Rapid Prototyping of Context-
Aware Applications. In: Human-Computer Interaction
(HCI) Journal, Vol. 16. (2001)
[2] S. Jang, Woo, W.: Ubi-UCAM: A Unified Context-
Aware Application Model. In: Context 2003, Stanford, CA,
USA. (Jun. 2003)
[3] Gellersen, H.W., Schmidt, A., Beigl, M.: Multi-Sensor
Context-Awareness in Mobile Devices and Smart
Artefacts. In: Mobile Networks and Applications, Vol. 7.
(Oct. 2002) 341-351
[4] Hong, J.: The Context Fabric. http://guir.berkeley.edu/
projects/confab/
[5] Ranganathan, A. and Campbell, R.H.: A Middleware
for Context-Aware Agents in Ubiquitous Computing
Environments. In: ACM/IFIP/USENIX International
Middleware Conference, Brazil. (Jun. 2003)
[6] Harry, C., Finin, T., and Joshi, A.: An Intelligent Broker
for Context-Aware Systems. In: Ubicomp 2003, Seattle,
Washington. (Oct. 2003)
[7] Ngo, H.Q., Shehzad, A., Kiani, S.L., Riaz, M., Lee,
S.Y.: Developing Context-Aware Ubiquitous Computing
Systems with a Unified Middleware Framework. In:
Embedded and Ubiquitous Computing: EUC 2004, LNCS
Volume 3207, Springer-Verlag 2004, pp. 672 – 681
[8] Wyckoff, P.: TSpaces, In: IBM Systems Journal,
August 1998
[9] Burrell, J. and Gay, G.K. (2002). E-Graffiti: evaluating
real-world use of a context-aware system. In: Interacting
with Computers 14 (2002), 301-312.
[10] Furmento, N., Hau, J., Lee, W., Newhouse, S.:
Darlington, J. Implementations of a Service-Oriented
Architecture on top of Jini, JXTA and OGSA. In:
Proceedings of the UK e-Science Program All Hands
Meeting 2003, Nottingham, UK. Sept., 2003
[11] Sun Microsystems, Inc.: JiniTM Architecture
specification. http://www.sun.com/jini/specs/

