
MAGI – Mobile Access to Grid Infrastructure: Bringing
the gifts of Grid to Mobile Computing

Ali Sajjad, Hassan Jameel, Umar Kalim, Young-Koo Lee, Sungyoung Lee

Department of Computer Engineering
Kyung Hee University

Yongin-si, Gyeonggi-do
449-701, South Korea
ali@oslab.khu.ac.kr

Abstract: Access to Grid services is currently limited to devices having significant
computing, network resources etc. such as desktop computers. On the other hand,
most of mobile devices do not have the potential resources to be either direct
clients or to host services in the Grid environment. Yet, extending the potential of
the Grid to a wider audience promises increase in its flexibility and productivity. In
this paper1 we present the MAGI middleware architecture that addresses the issues
of job delegation to a Grid service, adaptive management by including support for
offline processing, secure communication, interaction with heterogeneous mobile
devices and presentation of results formatted in accordance with the device profiles
and limitations. This is achieved by out-sourcing the resource intensive tasks from
the mobile device to the middleware. We also demonstrate through formal
modeling using Petri Nets that the addi-tion of such a middleware causes minimum
overhead and the benefits attained outweigh this overhead.

Keywords: Grid, mobile computing, middleware architecture, distrubuted computing

1 Introduction

Computational entities connected via various kinds of networks can dynamically share
their resources and perform computation-extensive tasks by using Grid computing
[FKT01]. Extending this potential of the Grid to a wider audience promises increase in
flexibility and productivity, particularly for the users of mobile devices who are the
prospective consumers and beneficiaries of this technology. Consider a teacher who
wants to augment his lecture with a heavy simulation test. He uses his PDA to access a
Grid service and submit the request. The service after executing the request compiles the
results which are then distributed to the mobile devices of the registered students of that
course. Similarly a doctor, on the way to see his patient, requests a Grid medical service
to analyze the MRI or CT scans of the patient from his mobile device.

1 This research has been supported in part by the ITRC program of Korean Ministry of Information and
Communication, in collaboration with Sunmoon University, Korea.

By the time he meets his patient; the results would have been compiled and presented on
his mobile device to facilitate the treatment. The major bottlenecks affecting mobile
devices are battery life, storage, memory, bandwidth, processing power and security. But
the clients that interact with the Grid middleware to accomplish a task are required to use
client-end, application-specific libraries. These libraries are relatively resource intensive
considering the limitations of mobile devices. Conceiving a distributed system that uses
these libraries directly will not be a practical system because of the resource demands.

Moreover, most of the conventional distributed applications are developed with the
assumption that the end-systems possess sufficient resources for the task at hand and the
communication infrastructure is reliable. For the same reason, the middleware
technologies for such distributed systems usually deal with issues such as heterogeneity
and distribution (hence allowing the developer to focus his efforts on the functionality
rather than the distribution). But we know that in case of mobile computing, these
assumptions are not true. This is, firstly, due to the tremendous progress in development
of mobile devices, a wide variety of devices are available, which also vary from one
another in a variety of ways. On one hand, laptops offer relatively powerful CPUs and
sufficient primary and secondary storage and on the other hand, cell phones have scarce
resources and supplementing these resources is either expensive or impossible
altogether. Secondly, in mobile systems, network connections generally have limited
bandwidth, high error rates and frequent disconnections. Lastly, mobile clients usually
have the ability to interact with various networks, services, and security policies as they
move from one place to another.

Also, as the environment of a mobile device changes, the application behaviour needs to
be adjusted to adapt itself to the changing environment. Hence dynamic re-configuration
is an important building block of an adaptive system. Also, the interaction approach
between the mobile client and the host dictates the effectiveness and efficiency of a
mobile system. Asynchronous interaction deals with problems of high latency and
disconnected operations that may arise with other interaction models. A client using
asynchronous communication can issue a request and continue with its local operations
and collect the output later. Hence the client and server modules are not required to
execute concurrently to communicate with each other. Such an interaction permits
reduction in bandwidth usage, decouples the client and server modules and improves the
scalability of a system. Hence, given the highly variable computing environment of
mobile systems, it is mandatory that modern middleware systems are designed that can
support the requirements of modern mobile systems such as dynamic reconfiguration
and asynchronous communication [Ka05].

In this paper, we present an architecture for a middleware named MAGI (Section 2),
which enables heterogeneous mobile devices access to Grid services and implement an
application toolkit that acts as a gateway to the Grid. This middleware provides support
for delegation of jobs to the Grid, secure communication between the client and the Grid,
offline processing, adaptation to network connectivity issues and presentation of results
in a form that is in keeping with the resources available at the client device. We
demonstrate (Section 3) that the addition of such a middleware causes minimum
overhead and the benefits obtained by it outweigh this overhead.

2 Detailed Architecture

The MAGI middleware is exposed as a web service to the client applications. The
components of the middleware (as shown in Figure 1) are discussed briefly as follows.

2.1 Discovery Service

The discovery of the MAGI middleware by mobile devices is managed by employing a
UDDI (Universal Description, Discovery and Integration) registry [Ho02], [Lu04]. Once
the middleware service is deployed and registered, other applications/devices would be
able to discover and invoke it using the API in the UDDI specification [Lu04] which is
defined in XML, wrapped in a SOAP envelope and sent over HTTP.

Figure 1: Deployment Model and Architecture of MAGI

2.2 Communication Interface with the Client

The interface advertised to the client is the communication layer between the mobile
device and the middleware. This layer enables the middleware to operate as a web
service and communicate via the SOAP framework [Do00].

2.3 Adaptive Management by Offline Processing

The advertisement of the MAGI middleware as a web service permits the development
of the architecture in a manner that does not make it necessary for the client applications
to remain connected to the middleware at all times while the request is being served.

This is done by utilizing solicit-response or notification operation types [Ce02]. We
focus on providing software support for offline processing at the client device. For this
we consider two kinds of disconnections; intentional disconnection, where the user
decides to discontinue the wireless connection and unintentional disconnection, which
might occur due to variation in bandwidth, noise, lack of power etc. This is made
possible by pre-fetching information or meta-data only from the middleware service.
This facilitates in locally serving the client application at the device. However, requests
that would result in updates at the middleware service are logged so that they may be
executed upon reconnection. To establish the mode of operation for the client
application, a connection monitor is used to determine the network bandwidth and
consequently the connection state (connected or disconnected). During execution,
checkpoints are maintained at the client and the middleware in order to optimize
reintegration after disconnection and incorporate fault tolerance.

2.4 Communication Interface with the Grid

The communication interface with the Grid provides access to the Grid services by
creating wrappers for the API advertised by the Grid. These wrappers include the Globus
framework protocols such as GRAM [Glo4], MDS [Cz01], GSI [We03] etc. which are
mandatory for any client application trying to communicate with the Grid services. This
enables the middleware to communicate with the Grid, in order to accomplish the job
assigned by the client.

2.5 Broker Service

The broker service deals with initiating the job request and steering it on behalf of the
client application. Firstly the client application places a request for a job submission.
After determining the availability of the Grid service and authorization of the client, the
middleware downloads the code (from the mobile device or from a location specified by
the client e.g. an FTP/web server). Once the code is available, the broker service submits
a “createService” request on the GRAM’s Master Managed Job Factory Service (via the
wrapper) which is received by the Redirector [Gl04]. The application code (controlled
by the middleware) then interacts with the newly created instance of the service to
accomplish the task. The rest of the process including creating a Virtual Host
Environment (VHE) process and submitting the job to a scheduling system is done by
GRAM. Subsequent requests by the client code to the broker service are redirected
through the GRAM’s Redirector.

A status monitor service (a subset of the broker service) interacts with GRAM’s wrapper
to submit FindServiceData requests in order to determine the status of the job. The status
monitor service then communicates with the Knowledge Management module to store
the results. The mobile client may reconnect and ask for the (intermediate/final) results
of its job from the status monitor service.

2.6 Knowledge Management

All the data and information generated and processed by the different modules is
handled by using semantic web technologies which provide the mechanisms to present
the information as machine-processable semantics and building up the intelligent
services to make decisions and perform knowledge level transformations on that
information. It includes the management of user and device profiles, ontologies, policies,
rule-bases, context information, system logs, performance metrics etc. The decisions and
transformed information is then passed on to the relevant modules within the system or
directly to the client or the Grid, which utilize it according to their specific needs. We
can further use it purposefully for detection of conflicting goals of different modules and
the resolution of those conflicts.
This module also maps each instance of a device’s profile to different modes of
operations { } where each is in accordance with the level of device’s
capabilities. The results are returned to the device according to the mapped mode of
operation. The profiles (device specifications) are maintained at the ontology repository.
If the device is not listed there, the client application submits it to the ontology
repository otherwise it identifies its profile by sharing the URL of its ontology on the
ontology repository (Figure 1). This information is fetched and processed and the
reasoning service maps it to one of

nLLLL ,...,,, 321 iL

{ }nLLLL ,...,,, 321 or creates a new level of

operation, . Any results shown to the mobile device are scaled down or adjusted
according to this mode of operation.

1+nL

2.7 Information Service

This module interacts with the wrapper of the Globus framework’s API for information
services (MDS [Cz01]). It facilitates the client application by managing the process of
determining which services and resources are available in the Grid (the description of the
services as well as resource monitoring such as CPU load, free memory etc. Detailed
information about Grid nodes (which is made available by MDS) is also shared on
explicit request by the client.

2.8 Security

The Grid Security Infrastructure is based on public key scheme mainly deployed using
the RSA algorithm [We04]. However key sizes in the RSA scheme are large and thus
computationally heavy in context of handheld devices such as PDAs, mobile phones and
smart phones etc. [Gu02]. We employ the Web Services Security Model [Gi02] to
provide secure mobile access to the Grid. This web services model supports multiple
cryptographic technologies. We use Elliptic Curve Cryptography (ECC) based public
key scheme in conjunction with Advanced Encryption Standard (AES) for mobile access
to Grid, which provides the same level of security as RSA and yet the key sizes are a lot
smaller [Gu02].

This means faster computation with lower memory, bandwidth and power consumption
accompanied with the same level of security as provided by the RSA public key
encryption scheme. Communication between the user and middleware is based on
security policies specified in the user profile. According to this policy, different levels of
security can be used e.g. some users might just require authentication, and need not want
privacy or integrity of messages. It may be noted that we emphasize on also providing
security on Application layer, which also gives us the flexibility to change the security
mechanisms if the need arises.

2.9 Communication between the Middleware Gateways

In case multiple instances of the MAGI middleware gateways are introduced for
improving scalability, some problem scenarios might arise. Consider a mobile device
that accesses the Grid network via gateway M1, but disconnects after submitting the job.
If the mobile device later reconnects at gateway M2 and inquires about its job status, the
system would be unable to respond if the middleware is not capable of sharing
information with its other instances. This is achieved in the following manner.

We define a Middleware Directory Listing which maintains the ordered pairs (ID, URI)
which will be used for the identification of the middleware instance. Also, we define an
X service as a module of the middleware which facilitates in communication between
any two middleware instances. After reintegration of the mobile client at M2, C sends the
ID of the middleware instance, where the job was submitted (i.e. M1), to the X service.
The X service determines that the ID is not that of M2. The X service then checks the
Middleware Directory Listing to find the URI corresponding to the Middleware instance
M1. The X service then requests (from the client application) the job-ID of the job
submitted by C. Upon a successful response the X service communicates with the X
service of M1 using the URI retrieved. After mutual authentication, X-M2 sends the job-
ID along with the clients request for fetching the (intermediate/final) results to X-M1. If
the job is complete, the compiled results are forwarded to client application. In case the
job isn’t complete yet, the client application continues to interact with middleware
service X-M1 (where the job was submitted). Note that X-M2 acts as a broker for
communication between C and M1. Also, if the C decides to disconnect and later
reconnect at a third middleware instance M3, then M3 will act as a broker and
communicate with M1 on behalf of C. As all the processing of information is done at the
middleware where the job was submitted, the other instances would only act as message
forwarding agents.

3 Petri Net Model of the System

In this section we model the interaction between the mobile client and the MAGI
middleware service. Our goal is to estimate the delay caused by the communication
between the client and middleware service as well as the additional processing done by
it. We use the time to completion of the whole process as an index of performance of our

middleware communication architecture. We keep the time taken by Grid processing
constant as our results will be bench marked against it. The communication is modeled
by using non-Markovian Stochastic Petri Nets [BPT00], [TB95].

Figure 2: Petri Net model of the communication between mobile client and MAGI middleware

At first, the place Ready contains a token, indicating that the client device is ready to
send a request. The send_req_UDDI transition is a timed transition modeling the
transmission of request to the UDDI service. A token in the place UDDI_registry
indicates that the request has been received by the UDDI service and it sends a response
back to the client modeled by the timed transition send_resp_UDDI. At this point the
client device is ready to send a request to the middleware indicated by a token in the
place Ready_for_request. Next the transition send_req fires, which simulates the
transmission of the job request to the middleware. Two arcs leave the send_req
transition; one to the Ready_ont_retrieval place and the other to the
Ready_code_retrieval place, indicating that the middleware service will perform two
operations concurrently. One is retrieving the ontology (transition retrieve_ont) and the
other is retrieving the code (transition retrieve_code). A token in Retrieval_done state
shows that the ontology has been retrieved. The second token enters the Ready_to_exec
state after the retrieve_code transition has been fired.

At this state the middleware is ready to execute the code. From here onwards until the
results have been obtained, the Grid performs all the actions. We just simulate it as an
immediate transition code_exec, as this time would be the same as in the case of a
normal Grid user. When this transition fires, a token reaches the Done_exec place. At
this point, the result_downscaling transition is enabled as there is already a token in
Retrieval_done state. This transition models the process of scaling down the results
according to the device’s profile. After this transition fires, a token reaches the
Ready_to_send_result place. The results are then sent to the client modeled by the
send_result transition and finally its firing sends a token in the place End_session
indicating the end of the session.

3.1 Parameters used in the Petri Net Model

To evaluate the Petri Net model in Figure 2, we used the following numerical parameters
which are consistent with the ones used in [PRS01]. We give a description of the
parameters and their assumed values as follows:

Table 1. Numerical values used for the parameters

Parameter Description Value

reqD Dimension of client request 1 KB

minD Minimum amount of Data 1 KB

maxD Maximum amount of Data 30 KB

ontD Dimension of ontology 10 KB

reqD Dimension of client request 1 KB

codeD Dimension of code 40 KB

scaleλ Results scale down rate 4 requests/sec

highTh Throughput of wired network 1 Mbps

lowTh Throughput of wireless network 10 Kbps – 1 Mbps

The firing rate of the results_downscaling transition has been fixed to scaleλ = 4
requests/sec. This factor is not only application dependent but also dependent on the
computational power of the computer containing the middleware. However a value of 4
req/sec is a reasonable approximation as used in [PRS01].

Table 2. Parameters used in the Petri Net Model

Transition Type Expression

send_req_UDDI Deterministic
reqD / lowTh

send_resp_UDDI Deterministic
minD / lowTh

send_req Deterministic
reqD / lowTh

retrieve_ont Deterministic
ontD / highTh

retrieve_code Deterministic
codeD / highTh

code_exec Immediate -

results_downscaling Exponential
scaleλ

send_result Uniform [] / maxmin , DD lowTh

We use the above mentioned parameters to describe the distributions associated with the
transitions in the Petri Net model.

3.2 Results from the Petri Net Analysis

Based on the values in Table 1, we evaluated the Petri Net described in Figure 2 by using
the WebSPN [Bo98], [Pu03] tool with which we can associate exponential as well as
non-exponential firing rates to the transitions.

0

2

4

6

8

10

12

14

16

10 20 50 100 200 500 1000

Throughput Kbit/sec

Ti
m

e
to

 C
om

pl
et

io
n(

t)
se

c

Figure 3: Time to completion (t) vs. throughput of the wireless network () lowTh

A value in the graph closer to the x-axis indicates lesser time taken by the middleware-
client communication. As can be seen from the figure, with increasing throughput of the
wireless network, the time to completion is reduced considerably and approaches zero as
the throughput reaches 1 Mbps. The transition send_result takes a major portion of the
overall time and hence the time to completion is dependent on the result size. Let’s see
the affect if we fix the result size to 1KB and keep the other values same. We can do that
by making send_result a deterministic transition with firing rate / . After
evaluating the Petri Net with this value, we obtain a graph shown in Figure 4.

minD lowTh

0

2

4

6

8

10

12

14

16

10 20 50 100 200 500 1000

Throughput Kbit/sec

Ti
m

e
to

 C
om

pl
et

io
n(

t)
se

c

Figure 4: Time to completion (t) vs. Throughput of the wireless network () with 1 KB
result size

lowTh

The graph shows no notable distinction with varying . We can conclude by
studying the two graphs that the time to completion is affected by two parameters,
namely the wireless network throughput and the result size. However, even with low
throughput and considerably large result set, the time taken by the middleware to mobile
device communication is within acceptable limits, only in the order of a few seconds in
the worst case.

lowTh

4 Related Work

Various efforts have been made to resolve similar issues. Signal [HA04] proposes a
mobile proxy-based architecture that can execute jobs submitted to mobile devices, so
in-effect making a grid of mobile devices. After the proxy server determines resource
availability, the adaptation middleware layer component in the server sends the job
request to remote locations. The efforts are more inclined towards QoS issues such as
management of allocated resources, support for QoS guarantees at application,
middleware and network layer and support of resource and service discoveries based on
QoS properties.

In [Br01] a mobile agent paradigm is used to develop a middleware to allow mobile
users’ access to the Grid and it focuses on providing this access transparently and
keeping the mobile host connected to the service. Though they have to improve upon the
system’s security, fault tolerance and QoS, their architecture is sufficiently scalable.
GridBlocks [Gr04] builds a Grid application framework with standardized interfaces
facilitating the creation of end user services. For security, they are inclined towards the
MIDP specification version 2 which includes security features on Transport layer. They
advocate the use of propriety protocol communication protocol and state that SOAP
performance on mobile devices maybe 2-3 times slower as compared to a proprietary
protocol. But in our view, proprietary interfaces limit interoperability and extensibility,
especially to new platforms such as personal mobile devices.

5 Conclusions and Future Work

In this paper we identified the potential of enabling mobile devices access to the Grid.
We focused on providing solutions related to distributed computing in wireless
environments, particularly when mobile devices intend to interact with Grid services. An
architecture for a middleware named MAGI is presented which facilitates implicit
interaction of mobile devices with Grid infrastructure. Its interface is based on the web
services communication paradigm. It handles secure communication between the client
and the middleware service, provides for adaptive management via offline processing,
manages the presentation of results to heterogeneous devices (i.e. considering the device
specification) and deals with the delegation of job requests from the client to the Grid.

We also demonstrated that the addition of such a middleware causes minimum overhead
and the benefits obtained by it outweigh this overhead. In future we intend to provide
multi-protocol support in order to extend the same facilities to devices that are unable to
process SOAP messages. Moreover, we will focus on trust issues, improving support for
offline processing and incorporating self-management in the middleware through the
knowledge management module [Sa05]. Along with this implementation we intend to
continue validating our approach by experimental results.

References

[Bo98] Bobbio, A.; Puliafito, A.; Scarpa M.; Telek, M.: WebSPN: A WEB-accessible Petri Net
Tool: International Conference on WEB based Modeling and Simulation, San Diego,
California, 1998; pp. 137–142, 11–14.

[BPT00] Bobbio, A.; Puliafito, A.; Telek, M.: A modeling framework to implement preemption
policies in non-Markovian SPNs: IEEE Transactions on Software Engineering, vol. 26,
2000; pp. 36-54.

[Br01] Bruneo, D.; Scarpa, M.; Zaia, A.; Puliafito, A.: Communication Paradigms for Mobile
Grid Users: Proc. 10th IEEE International Symposium in High-Performance Distributed
Computing, 2001.

[Ce02] Cerami, E.: Web Services Essentials: O’Reilly Publishers, Sebastopol, CA, USA, 2002;
pp. 108-109.

[Cz01] Czajkowski, K.; Fitzgerald, S.; Foster, I.; Kesselman, C.: Grid Information Services for
Distributed Resource Sharing: Proc. 10th IEEE International Symposium on High-
Performance Distributed Computing (HPDC-10), IEEE Press, 2001.

[Do00] SOAP Framework: W3C Simple Object Access Protocol ver 1.1, World Wide Web
Consortium recommendation: www.w3.org/TR/SOAP/

[FKT01] Foster, I.; Kesselman, C.; Tuecke, S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations: Int’l J. Supercomputer Applications, vol. 15, no. 3, 2001; pp. 200-
222.

[Gi02] Giovanni, D.L. et al.: Security in a Web Services World; A Proposed Architecture and
Roadmap: A joint security whitepaper from IBM Corporation and Microsoft
Corporation, Version 1.0, April 2002.

[Gl04] GT3 GRAM Architecture: http://www-unix.globus.org/toolkit/docs/3.2/gram/ws/
[Gr04] GridBlocks project (CERN): http://gridblocks.sourceforge.net/
[Gu02] Gupta, V.; Gupta, S.; et al.: Performance Analysis of Elliptic Curve Cryptography for

SSL: Proceedings of ACM Workshop on Wireless Security, Atlanta, USA, September
2002; pp. 87-94.

[HA04] Hwang, J.; Aravamudham P.: Middleware Services for P2P Computing in Wireless Grid
Networks: IEEE Internet Computing vol. 8, no. 4, July/August 2004; pp. 40-46.

[Ho02] Hoschek, W.: Web service discovery processing steps, http://www-
itg.lbl.gov/~hoschek/publications/icwi2002.pdf.

[Ka05] Kalim U.; Sajjad A.; Jameel, H.; Lee, S.Y.: Mobile-to-Grid Middleware: An Approach
for Breaching the Divide Between Mobile and Grid Environments: Lecture Notes in
Computer Science, Volume 3420, Jan 2005; pp. 1-8.

[Lu04] UDDI specification: www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
[PRS01] Puliafito, A.; Riccobene, S.; Scarpa, M.: Which paradigm should I use? An analytical

comparison of the client-server, remote evaluation and mobile agents paradigms’: IEEE
Concurrency and Computation: Practice & Experience, vol. 13, 2001; pp. 71-94.

[Pu03] WebSPN 3.2: http://campusone.unime.it/webspn/
[Sa05] Sajjad A. et. al.: AutoMAGI - towards an Autonomic middleware for enabling Mobile

Access to Grid Infrastructure: International Conference on Autonomic and Autonomous
Systems, Tahiti, 2005.

[TB95] Telek, M.; Bobbio, A.: Markov regenerative stochastic Petri nets with age type general
transitions, Application and Theory of Petri Nets: 16th International Conference (Lecture
Notes in Computer Science 935), Springer-Verlag, 1995; pp. 471–489.

[We03] Welch, V.; Siebenlist, F.; Foster, I. et al.: Security for Grid Services: HPDC, 2003.
[We04] Welch, V.; Foster, I.; Kesselman, C. et al.: X.509 Proxy Certificates for dynamic

delegation: Proceedings of the 3rd Annual PKI R&D Workshop, 2004.

	1 Introduction
	2 Detailed Architecture
	5 Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

