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Abstract 
 

Uncertainty always exists as an unavoidable factor 
when developing context-aware applications for 
pervasive computing environments [1][2][3][4]. In 
this paper, we propose a unified context model to 
support representation and reasoning about uncertain 
context. Our unified context model extends the existing, 
de-facto ontology-based context models with 
probabilistic models to support probabilistic 
reasoning. Especially, our context model can be easily 
integrated with existing ontology-based context-aware 
systems. Given the unified context model, unified 
context ontology can be built and used as frameworks 
in developing context aware applications. Besides, our 
recipe of supporting the probabilistic reasoning is 
flexible and adaptive to the highly variable features of 
pervasive computing environments.  
 
1 Introduction 

Pervasive computing is a vision in which computing 
systems are seamlessly integrated into the everyday 
lives of users. Context-awareness is the key to enable 
that vision [5]. Context aware applications can provide 
relevant services and information according to the 
user's context. Context aware systems can react and 
adapt to changes of its current surroundings. Context 
might be considered as a collection of information 
which characterizes the interaction between a user and 
the application. Time, location, temperature, lighting, 
sound and activity are examples of contextual 
information or context. 

Uncertainty is an unavoidable factor in any context-
aware system. It is mostly caused by the imperfectness 
and incompleteness of sensed data. As a result, the 
high-level information deduced from raw sensing data 

may not be accurate. For example, it is difficult to 
deduce that the user is sleeping based on low-level 
sensing information such as his location is in bed; the 
room light is dark and the sound is quiet. In addition, 
the underlying logical and rule-based reasoning 
mechanisms of existing context aware systems do not 
support reason about uncertainty. Hence, to be more 
reliable and adaptive, context-aware systems must have 
the capability of modeling as well as reasoning about 
uncertainty. 

The Bayesian networks (or probabilistic models) 
method, which is used commonly in AI community, is a 
very powerful method for the representation and 
reasoning about the uncertainty. A Bayesian network is 
a representation of a full joint distribution over a set of 
random variables. It can answer queries about any of its 
variables given any evidence. Besides, Bayesian 
network provides different forms of reasoning 
including: prediction (inferring results from causes), 
abduction (inferring causes from results) and finally, 
explaining away (the evidence of one cause reduces the 
possibility of another cause given the evidence of their 
result) which is especially difficult to model in logical 
rule-based systems [6]. Nevertheless, a fundamental 
limitation of using Bayesian network for knowledge 
representation is that it can not represent the structural 
and relational information. Also, the applicability of a 
Bayesian network is largely limited to the situation 
which is encoded, in advance, using a set of fixed 
variables. Thus, it is not suitable for representation of 
contextual information which is highly interrelated in 
pervasive computing environments [7].  

In this paper, we propose an integrated modeling 
approach which inherits the advantages from both 
Bayesian network and ontology. Our unified context 
model, which is influential by the Probabilistic 
Relation Model (PRM) [8], can be considered as the 
glue for integrating the probabilistic models into 
ontology. Given the unified context model, we can 
build a unified context ontology which captures both 
structural and relational knowledge as well as the 
probabilistic knowledge of a domain. The unified 
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context ontology specifies two parts of knowledge in a 
domain: (1) the relational schema which defines 
concepts and relations in term of classes, properties, 
relation, constraint; and (2) probabilistic models which 
specify the conditional probabilistic dependencies 
between concepts in that domain. Given the unified 
context ontology, Bayesian networks, which is used to 
reason about uncertain context, are derived in an 
autonomous and adaptive fashion which reflects most 
truthfully about the current state of the domain. 

The rest of paper is organized as follows. Section 2 
describes a scenario which will be used through out the 
paper as an example for illustrating of our approach. In 
section 3, we introduce the concept of our novel 
context model. Section 4 describes an ontology which 
is used to represent the uncertain contexts in domain-
oriented ontologies. Section 5 introduces three types of 
reasoning supported given the context ontology defined 
based on our context model. Section 6 mentions related 
works and makes some comparisons between our work 
and previous works. Finally, the paper end with 
conclusion in section 7 

 
2 A Smart Home Scenario 

Our smart automated home can proactively control 
the environmental conditions to reduce resource 
consumption. The smart home system follows some 
algorithms to minimize the energy consumption while 
still making the inhabitants comfortable. The windows 
and blinds can be controlled automatically according to 
the situations to provide optimal cooling or heating 
strategy or to create a fresh air breeze. 

 For instance, on a day when the temperature is 
shifted from cool to warm, the smart home system 
might determine that the optimal warming strategy is to 
open the windows and blinds so that the warm air can 
go inside. This scenario seems to be very simple but it 
is practically more complicated in the real situation. 
There are situations that the system needs to consider 
in order not to fail in "do the right thing", for example: 
the outside is so noisy while there are people reading 
inside the room; someone does not want the blinds 
open because he/she is sleeping; the air outside is 
polluted by dust and smoke, and so on. The decision to 
open or close the windows and blinds depends on many 
elements in the situation. Such dependencies are also 
changed from situation to situation. 

In the next section, we will show how to model this 
smart-home domain based upon our proposed context 
model. 

 

3 The Unified Context Model 
Our context model is influenced mainly by the 

Probabilistic Relational Model developed by Friedman 
et al. in [8] and the Probabilistic Frame-based systems 
of Koller et al. in [9]. We made several modifications 
to make our context model simple and suitable to our 
requirements. 

Our context model consists of two parts: 
• Relational schema which represents the 
structural and organizational information in forms 
of class, binary relations, relation chains and 
properties. 
• Probabilistic models which annotate the 
probabilistic dependence relationship between 
properties of classes. 

3.1. The Relational Schema 
The basic unit of our context model is a class X. A 

class may be a sub class of another (its super class). A 
class includes a set of relations R1,…,Rn and a set of 
properties P1,…,Pn. A relation Ri specifies a binary 
relationship between two classes X and Y. All relations 
are typed appropriately. The binary relationship 
X.R(Y) can be considered as an object-property of 
class X which has the value-type of class Y. For 
example, in Figure 1, the binary relation hasWindow 
define the relationship between class Room and class 
Window. 

 A relation-chain is a sequence of binary relations 
separated by period. A relation-chain creates an 
implicit relational link between two classes in a 
relational domain. A relation-chain X.R1.R2…Rn refers 
to the final class which is the type of the final relation 
in the chain. Each relation Ri in the chain must be 
correctly typed. In Fig. 1, the relation-chain 
ofWindow.ofRoom is an indirect relation between 
class WindowAgent and class Room. 

 

 
Figure 1: A relational schema of scenario 



A property X.Pi may have some associated 
restrictions (or facet). A restriction can be simply a 
standard value-type which specifies a range of values 
for a property. 

A property-chain is formed by appending a relation-
chain with a property of the referenced class. It 
specifies a reference from a class to another class's 
property. For example, the property chain 
ofWindow.ofRoom.hasLight-Status is a reference 
link from class WindowAgent to the property 
hasLightStatus of the class Room.  

 
3.2. The Probabilistic Model 

We use probability for representing the uncertainty 
within a domain. A class which consists of probabilistic 
information is annotated with the local probabilistic 
model. This type of class is called p-class. A p-class, 
similarly to the normal class, has properties, relations 
and restrictions. 

A property is either simple or complex. A p-class 
may also have some properties that do not participate 
in the probabilistic model, whose type is neither of the 
above. For example, the Person class may also have 
the property Name, which does not have an associated 
probabilistic model. This feature allows existing 
knowledge bases to be annotated with probabilistic 
information without requiring a complete redesign of 
the ontology. 

A simple property corresponds with a root node in 
Bayesian network. A simple property has two 
restrictions: hasValue and hasPD. The restriction 
hasValue is an explicitly enumerated list of possible 
values for the property. The restriction hasPD 
specifies the probability distribution over the values 
listed in the hasValue restriction.   

 

Figure 2: The probabilistic model for the scenario 

For example, the property Temperature of the class 
Room may have the restriction hasValue as {Hot, 
Warm, Cool, Cold} and the restriction has-PD as {0.3, 
0.25, 0.15, 03}. The sum of all values listed in a 
restriction hasPD must be equal to 1 to satisfy the 
probability axioms.  

A complex property corresponds with a node in 
Bayesian network which has a set of parent nodes. 
Beside two restrictions: hasValue and hasPD defined 
above, a complex property has two other restrictions: 
hasParents and hasCPT which specify the 
conditional probabilistic dependencies on other 
properties. The hasParents restriction of the complex 
property P specifies a list of property-chains on which 
the value of this property depends. Each property-chain 
refers to one property of other class. For example, in 
the WindowAgent class, the parent of the property 
OpenWindow may be the property-chain ofWindow.-
ofRoom.hasTemperature. The hasCPT restriction 
specifies the conditional probability distribution over 
the values of the property given values of its parents, 
which are listed in the hasParents restriction. The 
conditional probability distribution is specified using a 
conditional probability table (CPT) as in Bayesian 
networks. For each combination of values of its 
parents, the CPT provides a probability distribution 
over values of the property. For simplicity, we assume 
that the CPTs are represented as fully specified 
functions of parent values. 

 
4 A Unified Context Ontology 
4.1. A two-layer ontology 

Based on the proposed context model, we can 
specify the ontology to capture the knowledge of a 
domain. The p-class can be used just like any other 
normal class. We can create instances of class, which 
inherit all of its template properties and restrictions. In  
particular, the probability distribution over values of 
properties of the instance will be as described in the p-
class. Similarly, the inheritance mechanism can be used 
to make one p-class a subclass of another. A subclass 
can extend the definition of the super-class as well as 
overwrites parts of it. It can redefine the probability 
model of one or more of the properties. 

The context ontology should be able to captures all 
the characteristics of context information. As the 
pervasive computing domain can be classified into a 
collection of sub-domains such as home-domain, 
office-domain, university-domain, market-domain, etc, 
it would be easy to specify the context in one domain in 
which a specific range of context is of interest. The 
separation of domains can also reduce the burden of 
context processing. 



 
Figure 3 A two-layer context ontology for relational and probabilistic knowledge 

 Our context ontology is divided into two layers 
including a generic ontology layer and domain-specific 
ontologies layer as shown in Fig. 3: 

o The generic ontology is a high level ontology 
which captures general context knowledge 
about physical world in pervasive computing 
environment.  

o The domain-specific ontologies are a collection 
of low-level ontologies which define the details 
of concepts and properties in each sub-domain. 
A low-level ontology in each sub-domain 
consists of two parts: (1) relational schema 
which captures all relations, relation-chains of 
the sub-domain; and (2) probabilistic models 
which capture all conditional probabilistic 
dependencies between properties in that sub-
domain. 

The details of each generic concept, such as 
relations, relation-chains, conditional probabilistic 
dependences, are redefined in the domain-specific 
ontologies and  may vary from one domain to another.  

 
4.2. Ontology language: PROWL 

We use Web Ontology Language (OWL) [10] for 
representing the context ontology. However, to 
represent new concepts such as relation-chains, 
property-chains and probabilistic-dependencies, we 
augment additional language elements. We call the 
derived language PROWL.  

 
4.2.1 PROWL for relational schema 

A relation of our context model is equivalent to the 
owl:ObjectProperty. We define a binary 
relationship as an owl:ObjectProperty.  

We define a class RelationChain to represent 
the relation-chain information between two classes. 
Each relation-chain is represented by an instance of the 
RelationChain class with a string to represent the 
chain.  

 
Figure 4: Class RC for relation chains 

A property-chain is defined by a class 
PropertyChain. It includes a relation-chain 
instance and a string for specifying the name of 
property of the referred class by the relation-chain 
instance. 

 
Figure 5: A relation chain definition 

<PropertyChain rdf:ID="PC- 
      ofWindow.ofRoom.hasLightStatus"> 
  <hasRelationChain rdf:resource="#RC- 
      ofWindow.ofRoom"/> 
  <hasProperty rdf:datatype="&xsd;string"> 
      hasLightStatus</hasProperty> 
</PropertyChain> 

<RelationChain rdf:ID="RC-ofWindow.ofRoom"> 
   <hasRelationChain rdf:datatype="&xsd;string"> 

 ofWindow.ofRoom</hasRelationChain> 
 </RelationChain> 



4.2.2 PROWL for probabilistic relational model 
As mentioned above, the OWL language does not 
support to describe new concepts that we use in our 
context model. Thus, we introduce three new additional 
elements: rdf:hasDist, rdf:hasParents and 
rdf:hasCPT. We define these language elements as 
a rdf:List 

 
Figure 6: Definition of a new property element 

To define the probability distribution over values 
for a property, we use the rdfs:range together with 
owl:oneOf to specify an enumerated list of possible 
values for a property. To define the probability 
distribution over this list element, we use the additional 
elements rdf:hasDist, which can be applied to 
both data-type and object properties. Fig. 7 shows the 
probability distribution over the values of property 
hasLightStatus as {{Bright 0.3} {Dark 
0.4} {Dim 0.3}}. 

In Fig. 8, we define the conditional probabilistic 
dependencies of property WindowAgent.-
OpenBlind with data-range {Open, Close} on 
two parent properties: (1) Room.hasLightStatus 
with data-range {Bright, Dark} and (2) 
OutdoorPlace.hasLightStatus with data-
range {Bright, Dark}. The conditional 
probability distribution of WindowAgent.-
OpenBlind(Open) is represented as a list {0.3, 
0.9, 0.6, 0.4}.  

 
Figure 7: PROWL for probability distribution 

 

Figure 8: Conditional Probabilistic Dependencies  

5 Reasoning about context 
Based on the context ontology that supports the 

representation of both ontological and probabilistic 
knowledge, we could construct a context knowledge 
base for the application domain. Reasoning about 
context information in the domain is supported by three 
types of reasoning mechanism: ontological reasoning, 
rule-based reasoning and Bayesian reasoning. 

 

 
Figure 9: Three supported reasoning mechanisms 

 

<owl:Restriction> 
  <owl:onProperty> 
  <owl:ObjectProperty rdf:resource="#OpenBlind"/>

  </owl:onProperty> 
  <rdf:hasParents>  
   <rdf:List> 
    <rdf:first rdf:resources="#PC-
ofWindow.ofRoom.hasLightStatus">/>  
    <rdf:rest> <rdf:List> 
      <rdf:first rdf:resources="#PC-
ofWindow.ofRoom.hasOutdoorPlace.hasLightStatus"/> 
      <rdf:rest rdf:resource="&rdf;nil" />       
    </rdf:List> </rdf:rest>  
   </rdf:List> 
  </rdf:hasParents> 
  <rdf:hasCPT> 
   <rdf:List> 
    <rdf:first rdf:datatype="&xsd;integer"> 
               0.3</rdf:first><rdf:rest>  
     <rdf:List> 
      <rdf:first rdf:datatype="&xsd;integer"> 
                 0.9</rdf:first><rdf:rest> 
       <rdf:List>  
        <rdf:first rdf:datatype="&xsd;integer"> 
                  0.6</rdf:first>  
         <rdf:rest> 
          <rdf:List>  
           <rdf:first df:datatype="&xsd;integer">
                     0.4</rdf:first>  
          <rdf:rest rdf:resource="&rdf;nil" />   

          </rdf:List>  
         </rdf:rest>  
       </rdf:List> </rdf:rest>  
     </rdf:List> </rdf:rest>  
   </rdf:List> 
  </rdf:hasCPT> 
</owl:Restriction>

<rdf:Property rdf:ID="hasDist"> 
  <rdfs:label>hasDist</rdfs:label> 
  <rdfs:domain rdf:resource="#Restriction"/> 
  <rdfs:range rdf:resource="&rdf;List"/> 
</rdf:Property> 

<owl:ObjectProperty rdf:ID="hasLightStatus"> 
 <rdfs:domain rdf:resource="#Room"/> 
  <rdfs:range> <owl:Class> 
    <owl:oneOf rdf:parseType="Collection"> 
    <LightStatus rdf:ID="Bright"/> 
    <LightStatus rdf:ID="Dark"/> 
    <LightStatus rdf:ID="Dim"/> 
  </owl:oneOf> </owl:Class> 
 </rdfs:range> </owl:ObjectProperty> 
<owl:Class rdf:ID="Room"> 
 <rdfs:subClassOf> <owl:Restriction> 
   <owl:onProperty> 
    <owl:ObjectProperty rdf:ID="hasLightStatus"/> 
   </owl:onProperty> <rdf:hasDist> <rdf:List> 
     <rdf:first rdf:datatype="&xsd;integer"> 
               0.3</rdf:first>  
     <rdf:rest> <rdf:List> 
      <rdf:first rdf:datatype="&xsd;integer"> 
                0.4</rdf:first>  
      <rdf:rest> <rdf:List>  
       <rdf:first rdf:datatype="&xsd;integer"> 
                 0.3</rdf:first>  
       <rdf:rest rdf:resource="&rdf;nil" />       
      </rdf:List> </rdf:rest>  
     </rdf:List> </rdf:rest>  
    </rdf:List> </rdf:hasDist> 
  </owl:Restriction> </rdfs:subClassOf> 
</owl:Class>



 
Figure 10: An example of the context ontology for the scenario in section 2 

5.1. Rule-based reasoning 
Rule-based reasoning mechanism is the default 
reasoning mechanism supported by the context 
ontology. However, when applying the rule to a simple 
or complex property of a p-class is that two update 
steps are executed. One updates the value of the 
property. The other updates the probability 
corresponding to that property's value as 1 and set 
other probability as 0 to satisfy the probability axioms. 

For example, in our scenario, the context 
WindowAgent.OpenBlind can be deduced from the 
sensed context {OutdoorSpace.hasLightStatus, 
Room.hasLightStatus} as follows: 

Prob(hasLightStatus(OutdoorSpace, Bright), 1.0) ^ 
Prob(hasLightStatus(Room, Dim), 1.0) ^ 
Prob(Activity(Binh, Sleeping) , 1.0) 
⇒ Prob(OpenBlind(WindowAgent, Open), 1.0) 
Our rule-based engine is developed based on the 

Jena Framework [11].  
 

5.2. Ontological reasoning 
The ontological reasoner can be described as an 

instance of the rule-based reasoner. It works by 
propagating implication, predefined rules over the 
instance data. For example, the relation-chain 
ofWindow.ofRoom of the instance BedRoom-
WindowAgentNo1 of the class WindowAgent will be 
an instance BedRoom of class Room so that the 
relation-chain ofWindow.-ofRoom satisfies. 

5.3. Probabilistic reasoning 
Before standard Bayesian inference can be used to 
answer queries about the values of the properties of the 
instances, a Bayesian network is derived from the 
context ontology. Depending on the domain, there may 
be more than one derived Bayesian network 
corresponding to each probabilistic relational model 
from the ontology. 

The algorithm Construct-BN to derive a Bayesian 
network is described as follows. Each node in the 
Bayesian net B has the form I.P where I is an instance 
of a p-class and P is a property. The algorithm 
maintains a list L of nodes to be processed. Initially, L 
contains only the simple properties of named instances. 
In each iteration, the algorithm removes a node from L 
and processes it. The removed node I.P is processed as 
follows. For each parent I.RC.Pi, which refers to a 
property of another instance, an edge is added form 
I.RC.Pi to I.P; If I.RC.Pi is not already in B, we add 
I.RC.Pi into B and L; when all parents of I.P have been 
added, the CPT is constructed from the has-CPT 
restriction of I.P. 

Since the Bayesian network is available, the 
standard Bayesian reasoner can use that network to 
infer about the probabilities of all nodes. Then, the 
probability of each node is updated directly to the 
property of instances the ontology. We implemented 
the Bayesian reasoner based on the API of Microsoft 
Belief Network software [16]. 



 

Figure 11: A derived Bayesian network given the context ontology in figure 10 

Fig. 10 shows the current status of the context 
ontology for the scenario in section 2. We have 
evidences about the temperature, light status and sound 
of both bedroom and its outdoor place. We also have 
the information about the activity of the person (Binh). 
Hence, the probabilities of correspondent properties are 
set to 1. Given the context ontology, a Bayesian 
network is derived with structure shown in Fig. 11. 
After the Bayesian reasoning is finished, the inferred 
probabilities are updated to the context ontology as 
shown in Figure 10.  

 
6 Related work 

There has been some research in addressing the 
issue of uncertainty in context aware computing. First 
efforts tried to modeling the uncertainty of context 
information using various terms such as 
"imperfectness" [12], "confidence" [13], "accuracy" 
[14], etc. Nevertheless, those approaches lack of 
expressiveness to capture rich types of context 
information and they do not support the reasoning 
mechanism. 

Using Bayesian networks to model and reason about 
the uncertain context was received much attention by 
context-aware research community recently. Some 
research has been used Bayesian network as the 
solution to reason about uncertainty. Ranganathan et al. 
[3] used Microsoft's Belief Network (MSBN) software 
to create the Bayesian networks structure. The 
Bayesian network is defined by knowledge expert and 
is mapped to predicates of instance in the ontology by 
developer. Tao Gu et. al. [15] represented directly a 
fixed Bayesian network over the properties of instances 
in the OWL-based ontology and then translates from 
the RDF graph into a Bayesian network for reasoning. 

These two approaches solved the major problem of 
dealing with uncertainty by providing the probabilistic 
reasoning mechanism. However, their approaches to 
support uncertain reasoning are application-specific 
since the representation method does not represent the 

knowledge supporting reasoning. Even though   the 
uncertainty is represented in ontology in [3], it still 
needs much help from knowledge expert and 
developers before it can be used by an appropriate 
reasoning mechanism. Whereas in [15], every new 
application needs help from knowledge experts to 
define the new Bayesian network in the ontology even 
if the domain knowledge is similar. Also, the mapping 
between a Bayesian network and the ontology is done 
manually by developers in both approaches. Even when 
the probabilistic knowledge in form of Bayesian 
networks is integrated into the context ontology in [15], 
it is still unable to reuse even for a similar application. 
The major reason is that the Bayesian network is 
defined over the instances which are distinctive for a 
typical application. In summary, both approaches 
provide no systematical method to integrate Bayesian 
reasoning mechanism into the ontology-based models. 

The major characteristic in our approach is that we 
define the probabilistic information at the concepts 
level. We not only specify the uncertainty of concepts 
value (property's value) but also specify the 
probabilistic relationships between those concepts.  
Since ontology mainly deals with concepts within a 
domain, our context model can easily extend the 
current ontology-based modeling approach. Based on 
our unified context model, we can easily define a 
unified, domain-oriented context ontology which 
captures both logical or relational and probabilistic 
knowledge. Given that unified context ontology, we 
can build several knowledge bases for similar 
applications. For example, we can model a smart-home 
domain and build the smart-home ontology. For every 
new smart-home applications, we only need to specify 
the instances given that predefined smart-home 
ontology without redefine or construct a new one. 
Besides, we can add probabilistic information into an 
existing ontology by adding concepts such as relations, 
relation chains and conditional probabilistic 
dependencies without construct a brand-new context 



ontology from the scratch. Thus, our work supports 
scalability and reusability with respect to knowledge 
modeling. Since the mapping-relations between nodes 
in Bayesian networks and properties of classes are 
explicitly defined in the ontology, the mapping process 
can be operated automatically without help from 
knowledge experts and developers. This feature 
reduces much burden on knowledge experts and 
developers in comparison with previous works [15], 
[3]. In addition, as probabilistic reasoning is supported, 
we can easily extend from reasoning to learning about 
uncertain context, which is simply learning about the 
parameters of Bayesian networks. The learning makes 
the Bayesian reasoning more robust and adaptive in 
highly variable pervasive computing environments. 

 
7 Conclusions 

This paper describes our approach of representing 
and reasoning about uncertain context. Our study in 
this paper shows that the proposed context model is 
feasible and necessary for supporting context modeling 
and reasoning in pervasive computing. Our work is part 
of an ongoing Context Aware Middleware for 
Ubiquitous System, which attempts to provide an easy, 
reusable infrastructure to develop ubiquitous context-
aware applications. We are exploring method to 
integrate multiple reasoning methods from AI area and 
their supported representation mechanism into the 
context reasoning and management layer. 
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