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Abstract

We define the use of Bayesian Networks for fault detec-
tion in the perception mechanism of context-aware ubiqui-
tous systems. This paper1 describes the complete working
of such a fault detection module. Context-Aware ubiquitous
systems use a large number of sensors and actuators for
their interaction with the environment. The data collected
from the environment describes the behavior of the system
under different scenarios. If in any way this data or the
source of the data gets corrupted then the context formed
from such data would be erroneous and result in over-all
system misbehavior. Therefore such data needs to be fil-
tered and possible sources of error should be detected in
the system’s perception mechanism

1. Introduction

Ubiquitous systems have been designed to facilitate the
interaction of humans with computers so that instead of be-
ing distinct objects in a user’s environment, computers be-
come a part of it by embedding the computations into the
environment. Recent work includes making such ubiqui-
tous devices and systems context-aware, enabling the de-
vices or the systems react and adapt to changes which take
place in their domain of concern [3]. Achieving context-
awareness is not easy because the entire perception of the
system is made up of disparate sensors and controllers.

Requirements of context-aware ubiquitous systems in-
clude that the system maintain an intense interaction with
the environment and make decisions according to the vari-
ous environmental entities such as users, devices, physical
quantities. These decisions are also based on the system it-
self including the performance of the various software mod-
ules and the hardware involved [3]. As a high degree of
user ubiquity is needed in such context-aware systems, the
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system relies heavily on the sensors and controllers it uses
to monitor and change the environment. Sensors and con-
trollers are also physical devices which may malfunction
under different circumstances. Any such malfunction in the
perception mechanism of a context-aware system should
not go unnoticed and undetected, so that the higher level
context formation remains flawless, keeping the behavior
of the system reliable.

Recent research has also tried to make such context-
aware ubiquitous systems more autonomous [11]. A sys-
tem needs to be self-healing, self-reconfigurable, be able to
self-optimize and be self-protected [11]. All these concepts
require that the system should be able to know the state of
its software and hardware at all points. The state of the
sensors and actuators which constitute the entire perception
mechanism of the system is of vital importance. Knowing
the state of the perception mechanism would help an au-
tonomic system to determine the policies required for self-
optimization, the current state of the perception mechanism,
which quantities/events can be sensed, and in case of possi-
ble faults in the perception mechanism the system should be
able to carry out isolation or self-healing policies. These re-
quirements stress the need for a fault detection mechanism
in context-aware and autonomic ubiquitous systems. This
fault detection module should be able to correctly represent
the system state at all time and at the same time it should be
able to detect any anomaly in perceived data.

In context-aware ubiquitous systems the system pos-
sesses enough prior domain knowledge that it can anticipate
the changes in the environment and reason about them [3].
This prior knowledge of the domain can be used for sensor
fault detection and isolation. The need for fault-detection
in the perception mechanism becomes very important for
efficient system functionality. The motivation for using
Bayesian networks comes from the fact that Bayesian net-
works not only model variables of a domain but also im-
pose a causal ordering on them [5, 9], and the beliefs of
individual variables combine to form the overall belief in
the entire modeled system. Scenario based fault detection



constrains the sensors and actuators to behave in a certain
pre-determined fashion. The beliefs of the system in light of
the initially sensed data automatically give posterior beliefs
about actuator settings and the resulting sensor readings.
Thus Bayesian Networks help in determining the state of a
certain sensor or actuator based upon acquired sensor data,
this is done with the help of prior beliefs about the sensor
state and the physical quantity or the event being monitored
by the sensor.

2. Context Aware Ubiquitous Systems

Context-aware ubiquitous systems have been designed to
maintain continuous interaction with the user and his envi-
ronment [3]. In doing so the system needs to know the cur-
rent context in which it is supposed to function. The context
is made up of various domain features gathered from sensor
and actuator data [3]. These sensors and actuators are sus-
ceptible to faults, such faults need to be identified and the
erroneous data discarded.

2.1. The Interaction Mechanism

In a context-aware ubiquitous system the entire percep-
tion mechanism of a system is composed of a number of
diverse sensors deployed in the environment to monitor var-
ious physical quantities. A number of controllers or actua-
tors are used by the system to respond to various changes
which take place in the environment. The detection of
such changes and the formation of context based on these
changes is dependent on the data sensed from the monitored
environment [3].

In any particular scenario the steps taken by the system
can be defined as sensing some data from the environment
and acting on its basis. The action taken in the light of the
sensed data is determined through various factors such as
available resources, the contextual contents, and user pref-
erences. Every such decision step taken by the system also
involves sensing data which is needed for validating if the
action has indeed succeeded. The complete interaction cy-
cle in a scenario is shown in fig.1.

Therefore sensors are needed both for determining the
sequences of changes to be taken by the system and to sense
if the desired results have been achieved. Actuators act as
the effectors of the system which help it in controlling the
state of affairs in the domain of concern.

For detecting anomalies in system-behavior such sce-
narios need to be identified so that the system behavior
becomes predictable, and any deviation from the desired
course of action results through some fault at any of the
three levels.

Actions (determined through the 
nature of the system, context and 

the sensed data)

Sensed Data (validation of the 
action(s) taken, in the current 

domain of interest)

Sensing Data (determining events, 
changes in system possibly caused 

by external factors)

Figure 1. The complete interaction cycle of a
context-aware ubiquitous system.

2.2. Context Formation

In large context-aware ubiquitous systems, the formation
of context plays the most important role in their functional-
ity. Context formation is done, using some prior domain-
specific knowledge and the sensed data [3]. Prior domain
knowledge can be represented using any feasible knowledge
representation technique such as ontology etc [3]. Con-
text is formed by fusing together sensed data and this prior
domain knowledge. As this formation of context is done
solely on the basis of sensed data, if through any sequence
of events the sources of such data get corrupted the context
formed would be incorrect. As the contextual knowledge
plays the central role in the interaction cycle of a ubiqui-
tous system, incorrect contextual information would result
in erroneous system behavior.

3. Fault Detection Using Bayesian Networks

This section outlines a scheme for scenario based
fault detection in context-aware ubiquitous system using
Bayesian networks. The section outlines the modeling of
scenarios, sensors and actuators. At the end of the section
the complete network representation and working are ex-
plained through an example.

3.1. Modeling a Scenario

The overall system behavior can be monitored for given
scenarios which can occur in the domain of concern. This
requires the modeling of sensors and the actuators involved
in the interaction mechanism of the system. The main rea-
son for using scenarios in modeling system behavior model-
ing comes from the fact that all sensors and actuators do not
collaborate every time, so monitoring and reasoning about
the entire set of sensors and actuators becomes computa-
tionally infeasible and absurd. Scenarios within the domain
of concern pin the current focus of the system on only a
subset of all the sensors and actuators, and at the same time



InS Act VaS

Figure 2. The general scheme for a Bayesian
belief network representing a scenario. (InS:
Input Sensors, Act: Actuators, VaS: Validat-
ing Sensors)

they also define a relation between their behaviors. As ex-
plained previously sensors are used by the system at two
levels in its interaction mechanism, we need to model them
keeping this perspective in mind.

A general Bayesian belief network structure for model-
ing scenarios is shown in fig. 2. As can be seen from the fig-
ure sensors have been modeled at two different levels within
the Bayesian network, once for sensing the data, which trig-
gers the response of the system through the actuators, and
then again for sensing the desired changes. This structural
imposition makes the system more deterministic. The be-
havior of all the sensors and actuators becomes inter-related
given the scenario specifications. This inter-relation helps
in detecting any sort of anomaly in the system and isolating
any possible faulty component.

As shown in figure 2, a complete scenario is modeled
as a serial connection [5, 9], in which the actuator(s) form
the connecting node. The model defines a conditional in-
dependence between the sensors needed for performing an
action (InS) and the sensors for validating the action (VaS),
by modeling the actuators as the connecting node. Once the
action has been performed the behavior of the sensors in the
validating phase is dependent only on the current actuator
settings and the initial sensor data need not be considered in
the validating phase as depicted by the network structure in
fig. 2.

Fig. 2 simply defines an abstract scheme for modeling
scenarios, in order to make the network more concrete we
need to define the structural representation of sensors and
actuators and at the same time the linkages between sensors
and actuators also need to be modeled explicitly. These is-
sues are addressed in the subsequent sections.

3.2. Modeling Sensors

For modeling a sensor it is necessary to know its current
state. The state of a sensor represents its correctness and can
be determined by taking into account certain factors such as
the age of the sensor equipment, its reliability as provided
by the vendor etc. In order to form a belief network for rep-
resenting a sensor it is necessary that we take into account
the quantity or the event being monitored for example tem-
perature for a heat sensor. The main reason for including
the physical quantity in the belief network is purely causal,

SS QE

SV

Figure 3. A Bayesian network representing a
sensor (SS: Sensor State, QE: Physical Quan-
tity/Event, SV: Actual Sensor Reading)

because it is the physical quantity which causes the sensor
to change its value. The belief network should also include
the behavior of the sensor as represented by its actual read-
ing, and in the end the state of the sensor should also be a
part of the network. These three variables are sufficient to
correctly model a sensor. Fig. 3 shows a Bayesian network
depicting a sensor.

According to the chain rule for Bayesian networks the
joint probability distribution of the model is given by the
equation:

P (SS, QE, SV ) =
P (SV |SS, QE)× P (SS)× P (QE)...(1) (1)

The initial specification of the model includes three po-
tentials namelyP(SS): the prior beliefs in sensor state,
P(QE): prior beliefs about the monitored quantity, and
P (SV |SS, QE) the conditional beliefs about sensor behav-
ior given the sensor state and the monitored quantity.

The model represents a converging connection [5, 9] be-
tween the three variables with the actual sensor value being
the connecting node. In a converging connection once ev-
idence arrives at the connecting node the other two nodes
become dependent. The model is very simple and facilitates
the dependence only when actual sensor reading is consid-
ered.

Evidence for the model comes in the form of sensor data
and is absorbed at the connecting variable. This evidence
renders the other two nodes dependent [5, 9], such that
based on their prior belief measures their posterior beliefs
in light of recent evidence can be computed easily using any
of the evidence propagation algorithms for Bayesian belief
networks [5, 9]. This means that at any instance a sensor-
reading can be used for determining the state of the sensor.
The actual sensor reading is entered as an evidence ‘e’ into
the network, using any algorithm for evidence propagation
the posterior beliefs about the sensor state and the physical
quantity being measured can be calculated separately.

P (SS, QE, SV, e) = P (SS, QE, SV ) · e (2)

Where (2) represents the absorption of the evidence into
the network and (3) shows the belief about the sensor state
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Figure 4. A Bayesian network representing an
actuator (AS: Actuator State, QE: Physical
Quantity/Event, AV: Actuator Reading, MQ:
controlled quantity))

as a consequence of the evidence. The belief measure about
the physical quantity can also be calculated using (3) by
interchangingSSwith QE.

P (SS|e) =

∑
QE,SV,e

P (SS, QE, SV, e)

P (e)
(3)

3.3. Modeling Actuators

Actuators are used by the system for controlling vari-
ous domain objects. As in the case of sensors the actua-
tors should also have some reliability measures. In the cur-
rent discussion we define actuator-state as being the vari-
able which depicts the current belief in the correctness of
the actuator. This parameter can be obtained by considering
various factors such as the age of the component, the current
environmental conditions, its failure rate as provided by the
vendor etc. A Bayesian network designed for an actuator
should contain its state, the physical quantity responsible
for bringing about a change in the actuator settings, and the
physical quantity or the domain object being controlled by
the actuator. A Bayesian network depicting an actuator is
shown in fig. 4

According to the model shown in figure 4, the controlled
object is conditionally independent from the actuator state
and the monitored physical quantity, given the actuator con-
figuration. Similarly any evidence on the actuator setting
makes the actuator state and the monitored physical quan-
tity dependant on each other. According to the chain rule of
Bayesian networks [5, 9] the joint probability distribution
of the model can be given as:

P (AS, QE, AV, MQ) =
P (MQ|AV )× P (AV |AS, QE)× P (AS)× P (QE)

(4)

The model needs prior belief measures about the actuator state,
and the physical quantity or event which influences the actuator to
change its value. Actuator settings under different environmen-
tal conditions are given by the conditional probability measure

AS QE
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Figure 5. Linking the sensor model to the ac-
tuator model.
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Figure 6. Linking the actuator model to the
validating sensor model.

P(AV—AS,QE). This probability measure also takes into account
the current state of the actuator.

As in the case of the sensor model the state of the actuator can
be calculated from the joint probability distribution in light of any
evidence ‘e’ about the actuator state or about the controlled object,
using similar equations

P (AS, QE, AV, MQ, e) = P (AS, QE, AV, MQ) • e (5)

P (AS|e) =

∑
QE,AV,MQ,e

P (AS, QE, AV, MQ, e)

P (e)
(6)

3.4. Piecing it Together

We have defined independent models for representing actuators
and sensors, but what is needed is a complete model as defined in
section 4.1. In order to create a model for a scenario we need to
link the models for sensors and actuators. This linking can be done
in the light of figure 2. We need only to define the rules for linking
together the sensor model with the actuator model at both levels.

At the first level where sensed data is used to perform an action
in the domain of concern we need to link together the sensor and
actuator models. This linkage is shown in fig. 5.

At the second level, we need to define a linkage between the
actuator model and the sensor model for representing the action
taken through the actuator and its validation through the sensors.
This linkage is shown in fig. 6. From fig. 6 it can be seen that the
QE node of the original sensor model has been replace by theMQ



Figure 7. A Bayesian network for the example

node of the actuator. This is because bothQE andMQ are physi-
cal quantities or events being monitored by sensors and controlled
through actuators.

After defining these linkages we simply need to fuse these two
models together and the complete scenario model would be com-
plete. In this completed model actual sensor values would act as
the evidence for the complete model. This evidence would then
be propagated through the network using any of the algorithms
for evidence propagation in Bayesian Networks [5, 9]. In light of
this evidence the state of all the sensors and the actuators can be
calculated and any possible fault in the system can be detected.

3.5. Example

In this example we present a simple scenario and use the pre-
sented technique to come up with the results. The scenario is ex-
plained as follows:

“When there is any user in the room, the internal temperature of
the room is adjusted according to the outside temperature. These
adjustments or preferences have been pre-fed into the system by
the user. The sensors used for this scenario consist of a movement
sensor, temperature sensors for external temperature and internal
temperature and a thermostat which is used to control the internal
temperature of the room.”

Fig. 7 shows a Bayesian network for the example developed ac-
cording to the presented technique. Table 1 gives the description
of the variables in the network. The set of probability distribu-
tions needed for this example is too large to be completely defined
here instead we simply provide the prior distributions of the state
variables and the physical quantities.

All the state variables have been given the probability distri-
bution of (0.9,0.1) corresponding to the variable state descrip-
tion in table 1. Similarly the prior distribution for movement is
given as (0.85,0.15) and for the external temperature it is given
as (0.1,0.65,0.15,0.05,0.05) corresponding to the variable state de-
scription in table 1.

Probability distribution for one of the sensors is given in table
2, similar probability distributions have also been specified for all
other sensors and actuators. The distribution of the actuator re-
flects the user defined preferences under different circumstances,
e.g. the user preference for the internal room temperature if the
outside temperature is 31-40 and he is present in the room.

Table 1. Variable Description
Variable Name State Description
StateMD∗ Correct, In-

correct
State of the movement
sensor

MD read Yes, No Reading of the move-
ment sensor

Movement Yes, No Prior probability of
movement

Ext Temp 0-10, 11-20,
21-30, 31-40,
41-50

Prior probability of ex-
ternal temperature

Ext Senread 0-10, 11-20,
21-30, 31-40,
41-50

Sensor reading of the
external sensor

ThermACT 11-15, 16-20,
21-25

Setting of the thermo-
stat

Int Temp 5-10, 11-15,
16-20, 21-25

Internal temperature

Int Senread 5-10, 11-15,
16-20, 21-25

Reading of the internal
temperature sensor

∗StateExt Sensor, StateACT, StateIN Sensor are mod-
eled in the same manner.

Now if evidence is entered into the network in the form of sen-
sor and actuator readings assuming that the internal temperature
sensor is malfunctioning we want to see how the network behaves.
Let the following set of evidences be entered onto the network:

e1: Ext senread (0,0,0,1,0), e2: MDread (0,1), e3:
THERM ACT (1,0,0), e4: Insenread (0,0,1,0).

The hypothesis variables namely the states of the sensors and
the actuators are given as follows:

StateMD = (0.7129 , 0.2871), StateExt Sensor = (0.9 , 0.1),
StateACT = (0.9492 , 0.0508), StateIN Sensor = (0.1854 ,
0.8146).

The above hypothesis variables clearly indicate that the inter-
nal temperature sensor has malfunctioned, as can be seen from
the state variable description of the internal temperature sensor
(StateIN Sensor) which shows that it is incorrect with a belief
of 81.46%. This example was simulated using theMSBNXTM

tool [12].
Thus, equipped with correct beliefs about all the components

in the scenario, some prior knowledge about the state of the com-
ponents, physical quantities involved this technique would be able

Table 2. Probability Distribution MD read
StateMD Movement MD read

Yes No
Correct Yes 1.0 0.0

No 0.0 1.0
Incorrect Yes 0.65 0.35

No 0.35 0.65



to identify any anomaly in the system and its cause on the basis of
prior beliefs.

4. Related Work

Fault detection and diagnosis in sensors and sensor networks
has been the focus of much research in current years. Some well-
established models for fault tolerance in sensors include the cele-
brated Marzullo model [5] and Iyengar’s model [9]. These models
have proven very useful in large and distributed sensor networks.

Online fault detection of sensor measurements has also been
done using function minimization and non-parametric techniques
[4]. The approach uses function minimization and application of
non-parametric statistical methods to weed out the most probable
faulty sensors in a sensor network. Optimization is achieved by
using Powell non-linear function minimization method. Whereas
the above mentioned techniques have been applied successfully for
fault tolerance and fault-detection in distributed sensor-networks,
they do not involve much prior domain knowledge apart from that
of the sensors. In a context-aware ubiquitous environment the
prior domain knowledge is useful in predicting sensor behavior
and modeling complex scenarios which can constrain the behavior
of sensors and actuators.

Sensor and actuator Fault detection in large dynamic systems
has also been done using stochastic automaton [6]. The addressed
systems include those which have discrete valued inputs and out-
puts. The approach is based on the generalized observer scheme
and extends it to deal with discrete valued variables.

Bayesian Networks have been used in fault detection and di-
agnosis of dynamic systems [7]. The work has been focused
on domains related to the control and supervision of large in-
dustrial processes involving mixtures of continuous and discrete
variables. The main technique in this work includes hybrid dy-
namic Bayesian networks which capture the stochastic nature of
the process and accommodate all type of system variables both
discrete and continuous. The application of learning Bayesian net-
works from system data has also been used for fault detection in
large dynamic systems. This method explores the leaning capabil-
ity of Bayesian networks from measurements of the relevant sig-
nals that are present in the dynamic system by the use of a learning
algorithm [8]. As opposed to our technique these techniques cap-
ture the temporal relations of various process components. Such
temporal knowledge is not so critical for the context-aware ubiq-
uitous system to be used efficiently for fault-detection.

Bayesian networks have been successfully used in anomaly de-
tection. Nave Bayesian networks have been employed for detect-
ing anomalies in active networks for providing intrusion detection
services [10]. Similarly Bayesian networks have also been used
for developing self-aware services which use Bayesian networks
to detect any anomaly in their own behavior while functioning on
the internet [1].

[2] outlines and classifies the various types of faults which a
ubiquitous system can face. It goes on to propose an architec-
ture for a fault manager inside a ubiquitous system. The main
focus of the work is on fault-tolerance in large and context-aware
ubiquitous systems, dealing with application and device failures.
Our proposed scheme deals specifically with the perception mech-

anism of a context-aware ubiquitous system and addresses in detail
the faults which can occur in its hardware components.

5. Conclusion and Future Work

We have defined a technique for fault detection in the per-
ception mechanism of a context-aware ubiquitous system using
Bayesian networks. This technique would facilitate the correct
context formation based on perceived data, hence improving over-
all system performance.

The proposed scheme would also be useful in making such
context-aware ubiquitous system more autonomic. This scheme
can serve to identify system state, thus letting the system know
what resources are available, what is the condition of individ-
ual components. This particular usage of the scheme in system
state identification would help the system in executing various rou-
tines for self-healing and self-optimization under different circum-
stances.

Future challenges include issues relating to efficient storage
and identification of scenarios in a context-aware ubiquitous sys-
tem, and the adaptation and tuning of such Bayesian networks over
time for improving their functionality.
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