Applying Context Summarization Techniques in Pervasive Computing Systems

Faraz Rasheed, Young-Koo Lee, Sungyoung Lee
Dept. of Computer Engg. Kyung Hee University
Suwon, 449-701, Republic of Korea
faraz@oslab.khu.ac.kr, {yklee, sylee }@khu.ac.kr

Abstract

Pervasive Computing Systems are connected with a
number of sensors. The system receives a lot of
information continuously from sensors to sense ils
physical and computational environment. Knowledge
Management in such systems imposes several challenges
such as ubiquity and distributed knowledge acquisition.
As the amount of data grows, the query processing
efficiency is reduced. We proposed context summarization
and use of aggregate information in such systems. The
idea is to summarize the received information and try to
use this compact and reduced sized information as much
as possible to answer user queries. In this paper, we are
going to describe some of the techniques that can be
employed for such a summarization process.

1. Introduction

Ubiquitous or Pervasive computing envisions [1] an
environment where computer systems and devices are
spread through out the environment assisting humans to
perform their routine tasks proactively and seamlessly.
Thus a typical ubiquitous environment contains a number
of sensors, computing and networking devices along with
complex software sub-systems. Several ubiquitous
computing projects [2] [3] [4] [5] are under development.

Context Awareness is the prime technique to make
pervasive computing seamless and proactive. In order to
provide services proactively, the system needs to be
aware of the users and environmental context. But what
context actually is? We take context as any ‘implicit
situational understanding’ of the world considered and all
the information which define the considered situation.

! This work is supported in parts by Korean Ministry of
Information and Communication (MIC) and Information
Technology Research Center (ITRC)

Prof. Sungyoung Lee (sylee@khu.ackr) is the
corresponding author for this paper

One distinguishing aspect of ubiquitous systems is the
amount of context information (or context) it receives
from its physical and computational surroundings. Using
this huge amount of context information efficiently,
reasoning over it, making inferences about user activity,
context aware application adaptation, machine learning
and data mining. Thus context management is the
foremost important part of any ubiquitous system [7]

We approach the context management from a different
angle and question about keeping the raw context in
context repository. We propose [6] [14] that instead of (or
in addition to) keeping the raw context in the repository; it
makes sense to summarize the available context and keep
this summarized and inferred context in the context
repository. We believe that such a summarization would
result in saving the available storage space and also
provide the better query processing, reasoning, machine
learning and identifying the future intention of user.

The rest of the paper is organized as first we will define
the current issues, present and motivate the solution with
the context summarization (Section 2). In section 3 we
will present few techniques to achieve the context
summarization. In section 4, we will present our current
architecture that how we manage the context
summarization module. Later we will present (Section 5)
some research issues and challenges in the field. We
mention about some related work (Section 6). We will
conclude the paper with future work in section 7.

2. Context Summarization

The context information comes in a continuous stream
with each sensor emitting the data regularly (at least
during some interested activity). We are heading towards
flood of context data! Such a huge amount of data
requires proper management and formal management
techniques. At this point, we need to answer what to do
with such a huge amount of data? Do we need to store all
of this data? More importantly do we really need such a
large amount of data? Figure 1 presents the data injection
in typical ubiquitous computing environments.

Figure 1. Data injection in pervasive systems

Several context items sensed from the physical and
computational environment are consumed inside the
middleware system to reason for higher level context,
activity recognition, for data mining and proactive
pervasive services. Hence, we can afford to change the
internal representation of data.

Context Summarization [6] [14] is the process of
representation of existing information in such a way that
it consumes relatively less storage space and can still
answer most of the user queries with required confidence
level. For example, consider a temperature sensor
emitting the temperature value after every 5 minutes. We
can simply store this as it is coming. Table 1 demonstrates
this case.

Time Temp.
12105 [25°C
12000 5 205°C

Table 1. Temperature values after every 5 minute

Using Context Summarization, we can summarize this
information and group on the daily basis (Table 2)

Avg. | Max. | Min.

Date | Period Temp | Temp | Temp
12/01 | Morning | 5°C | 8°C | 3°C
12/01 | Afternoon | 10°C | 14°C | 8°C
12/01 | Evening 9°C B 0
12/01 | Early Night | 7°C | 8°C | 5°C
12/01 | Late Night | 4°C | 5°C | 2°C

Table 2. Temperature values stored for different
periods of day

Using the same concept, location and computational
environment context (like network bandwidth and
processor load at a particular time) can also be
summarized. The benefits of performing the context
summarization include reduced storage space. Such a

compaction of data repository will save significant
amount of storage space which will result in the faster
query execution and data retrieval. It will also make the
data migration in distributed environment more efficient.

3. Techniques of Context Summarization

3.1. Aggregation

In aggregation, the history of context information is
aggregated to generate compact and consolidated context.
Numerical context types like temperature, light intensity,
pressure, humidity, available network bandwidth and state
of current system resources can be summarized using this
technique. In previous section, we have demonstrated
how this technique can be used to summarize numerical
context information history.

The simplest form of aggregation is using averages,
standard deviation and then providing the nearest value
from the available interval aggregate value.

Another method is storing the values at the end of interval
and storing a time series graph values at elongated period
compared to the original interval. For example, if by
default the values are received after every 5 min., the time
series graph will record values after every 30 minutes.
Figure 2 demonstrates one such example. Here, we can
use curve fitting methods to find more appropriate curve
for the available data points and using the curve, we can
answer the queries for data points that are not available
explicitly in this curve (e.g., for time 11:47)

Temp.

10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30

Figure 2. Data points stored for sparse time values

Similarly, we can also use probability density functions
(PDF) for storing the values against time with certain
probability.

We are using aggregation not only to summarize the
numerical contexts but also for the summarization of
Location-Map (or radio map) for wifi based location
awareness data. The summarization techniques are being
applied to training data for neural networks which grows
in multiple of 10,000 for the location map of few floors!

We are getting some encouraging results with good
amount of storage space reduction and query results with
more than 70% accuracy.

3.2. Categorization

This technique categorizes context entities and
summarizes these categories. For example, context
information like user profile and device profile can be
categorized to form user or device groups having some
similar properties. In this way, we can identify the
activities and features of a particular group or category
like we can track the network bandwidth utilization by
some particular user group (say doctors) or by some
particular device group (say PDAs) during office hours.

Categorization is delayed and usually static type of
context summarization, i.e., it is not performed and
changed frequently. Categorization can be performed at
system startup by some human or the system can learn
itself and define categories as it is executed for elongated
period of time. In any case, the categorization supports
Machine Learning and higher level reasoning.

3.3. Context Extraction

In Context Extraction, useful and interested context is
extracted from continuous context streams such as audio
and video streams. For example, Context Extraction can
be applied to video stream received from video sensors
like Camera, Webcam to extract features like pixel
percent change, pixel change variance, picture motion
pattern (such as stable, regular, irregular), luminous
intensity, etc. In the similar way, audio context can also
be summarized.

It may discard the original (or raw) context even before it
being stored in the repository; hence resulting in only
storing the extracted features and not the original data. It
results in saving a lot of storage space but may take
considerable time in doing so. Some ubiquitous
computing projects [13], including our project CAMUS
[5], have been using this technique for some time.

3.4. Activity Sequencing

Context Extraction can also be implemented by recording
activities over time for a location and its participants. It
means that instead of storing the sparse context isolated
values, data is stored in such a form that it narrates a
spatio-temporal sequence of activities along with its
participants. In this process some unnecessary, redundant
and less useful information can be removed from the
details. The result of query then can be produced by
analyzing the activity and more importantly in context of
activity. For example, if the system has the record that

Bob had a party in his home last Saturday from 10 PM to
2 AM and users X, Y and Z were the participants. Then
the system can answer higher level queries like what was
user X doing on last Saturday, who were along with her,
what sort of party that was and how long did she stay
there; when it doesn’t explicitly have this information
about user X. Hence, there is no need for saving the
explicit information for users X, Y, and Z activities.

3.5. Pattern Identification

Context information can be summarized by identifying
existing patterns in the context repository or history of
activities. Consider the location context history stored in
the context repository as depicted in Table 3

Time User Room
09:05 1 1
09:02 2 1
09:02 3 1
10:08 1 2
1037 5 2

Table 3. Location Context History of Users and Rooms

Using pattern identification, a system may deduce the
pattern of user’s location during week days. See Table 4.

Thme Fgtiod User | Room | Probability
From | To

09:00 | 12:00 1 1 0.76
13:00 | 17:00 1 i 0.83
09:00 | 12:00 2 2 0.67
13:00 | 17:00 2 1 0.89
14:00 | 19:00 4 3 0.36

Table 4. Pattern Identification for User Location

In the similar way, system can find the pattern of room
occupants during various time periods. Using
categorization along with pattern identification, system
may also infer which user group (doctors, programmers,
operators) occupies which room at different time periods.
Pattern Identification is resource intensive but it results in
reducing considerable amount of storage space and also
supports higher level inference making, machine learning
and in predicting future intentions of a user or expected
behavior of a device in the current situation.

3.6. Generalization

In generalization, we map various ranges of context to a
general higher level context. For example, we can map

the raw temperature and network bandwidth to general
concepts as presented in Table 5 and 6 respectively.

Temp. Range (°C) | Generalized Weather

20 ~ 30 Hot
10~19 Moderate
0~9 Cold

Table 5. Generalization of Temp. Range

Network Bandwidth| Generalized
Range Available |Network Traffic
1 mbps or more Mostly free

500 kbps ~ 1 mbps |Moderately used
Less than 500 kbps |Busy

Table 6. Generalization of Network Bandwidth

Actually generalization is an instantaneous kind of
summarization performed between the sensor and
middleware. This real time summarization only supplies
the values to middleware when there is the difference of
context general state. This type of summarization will
reduce the processing burden from the middleware in
addition to saving the storage space used We can combine
generalization with other techniques like Aggregation and
Pattern Identification to further optimize the system.

4. Architecture & Working

As we mentioned in our earlier papers [6] [14], that there
are two types of summarization Active (or Instantaneous)
and Passive (or Delayed). Here we will only discuss the
delayed summarization (summarization performed on the
information repository). Figure 3 presents our architecture

CCS - Context Category Summarizer sub-module
CMD -> Context Meta Data

RCR -> Raw Context Repository

SCR - Summarized Context Repository

Data from
Sensor

! !

CMD

Receives
lccsl ‘ccsl ICCSJ i RCR
CS Module
Iccs\ [cos‘ ‘ccsl % 6CR

Figure 3. Context Summarization Module

Each category of context is dealt by corresponding
Context Category Summarizer (CCS) using one of the
summarization techniques mentioned earlier. A new
context type is introduced in the system with metadata

(CMD) describing its context type so that appropriate
summarization techniques can be applied. The metadata
also includes key fields on which to apply summarization,
the representation of summarized information (e.g., to
include a particular field in the summarized information),
the source and target location for retrieval and storage of
data and the default summarization strength; the degree to
which summarization is to be performed.

We are using our middleware CAMUS [5] to apply the
context summarization. The interaction of summarization
module with other components is presented in Figure 4.

Figure 4. Interaction with other middleware modules

First we extract features (unified representation of sensory
data) through our Feature Extraction Agents (FXA) and
store all these features in Feature Tuple Space (FTS)
which is an in memory repository of current context. As a
new instance of information is inserted in FTS, the older
one is transferred to the Context Repository (CR)
represented using ontology in OWL through Feature-
Context Mapping Layer. From then, all the middleware
modules (reasoning engines, middleware services) and
application access this information from the context
repository. As data is stored in the repository, we
summarize this information timely and store back to
repository. One approach (used in case of temperature,
humidity, etc) the raw information is removed from the
repository and only the summaries or aggregates are used
to answer queries. Another approach is to keep multiple
summaries of different strength are kept and used to reply
the query with appropriate confidence values. A hybrid
approach can also be used in which both summaries and
raw information are kept; specific or precise queries are
answered from raw data while the general queries are
answered through summarized information

4.1 Query Translation

Context Summarization modules change the context
repository and form data units with different schema than
the original one. How can context consumers cater with
this? How do they know whether particular information is
in summarized state or it is still in raw form? As in Figure

2, there is a special module called Query Translation (QT)
which encapsulates context repository (CR). All other
modules (CS, Reasoning Engine, Applications, etc)
interact with repository through QT. It makes all the
access to CR transparent, i.e., even the modules and
applications are not required to be aware of
summarization process. It keeps track of partition of
summarized and raw data and directs the access to these
accordingly. If the required data has been used in the
summarization, it directs the queries to the summarized
repository. The results produced due to QT are not 100%
accurate; hence it also returns a confidence value with
each query result. Further, a query may also specify the
minimum degree of confidence for the required results.

4.2 Context Category Summarizer (CCS)

Each category of context is summarized by a particular
Context Category Summarizer (CCS); hence there is a
different CCS for aggregation, pattern identification, etc
based information. For example, temperature, available
network bandwidth and noise level can be summarized
using aggregation CCS. Each CCS instance contains

(a) summarization algorithm,

(b) general parameters (key field, required fields, etc),

(c) specific parameters (source & target data source,
summarization strength, time interval for repeated
invocation of summarization),

(d) query translator for summarized information

Figure 5 presents the interaction of sub-modules of CS
engine. CCS Registry registers all the CCS and runs
various CCS instances run in parallel separate threads.
The mediators provide access to various storage media.

Tempeﬁtbre’
DB Mediator | | File Mediator
—L 5 B
DB File =

Figure 5. Interaction of core summarization modules

Summarization
Thread I

CS Manager also maintains a list of context information
used by different CCS for summarization. See Table 7.

CCS_ [CCS_
ID InstancelD

Context_
Type_ID

Last_
Updated

017 1 1 (temperature) | 09/19/05 05:42
017 2 4 (light intensity)| 09/19/05 11:37
019 1 21 (location_A) | 09/19/05 17:16

Table 7. List of context used by different CCS

Using this list, a Query Translation Manager can identify
whether a particular context information type is
summarized and also if the required data has been in
summarized or it is still in raw format. Moreover, if the
required information is in summarized state, then which
CCS’s QT should be invoked for query result?

5. Issues & Challenges

Context Summarization (CS) has its own unique research
issues and challenges both at conceptual and
implementation level. Here we identify several such
issues and wherever possible identify few applicable
solutions.

5.1. Performance Overhead

Perhaps the foremost concern to apply CS techniques is
the performance cost. The overall system should not be
ceased or hung-up during the execution of CS modules
and the resources like context repository should not be
locked for noticeable period of time. We solve this
problem by using the context aware CCS invocations, i.e.,
summarizers (CCS) are executed when system has
relatively less processing load.

5.2. Security & Risks

Security is the most questionable part of today’s
computing systems. The CS modules operate totally
inside middleware and directly access & modify the
context information which is the most valued asset of any
ubiquitous system. Hence, the components and modules
must be administered and validated carefully.

About the risks involved, firstly Context Summarization
(CS) results in some data and precision loss. Failing to
compensate this precision loss may result in decreasing
the performance and throughput of the system. Secondly,
improper Context Summarization may make the
reasoning and machine learning even more difficult,
complicated, inefficient, incorrect and misleading instead
of improving it. Finally, several modules of middleware
and application might be accessing the Context
Repository at the same time. A sudden modification by
CS might be unexpected for these modules and may make
them produce unexpected results which must be avoided.

6. Related Work

In our previous papers [6][14], we presented the idea and
motivation for Context Summarization (CS) and Context
Garbage Collection (CGC). Several existing ubiquitous
computing systems support features like feature
extraction, generalization [8] [5] but we want to formally
make summarization as part of the ubiquitous system’s
data management.

In Database Management Systems (DBMS), there are
techniques that deal with similar problems. Data mining
[9] and data ware housing [10] use the concept of
histogram [11] and multidimensional views of database
and work on the aggregate, consolidated data instead of
raw data. Online Analytical Processing (OLAP) and data
mining is not done on the actual data but on the historical,
consolidated and aggregate data while we are performing
the context summarization on the actual context. The goal
of data mining and OLAP is somewhat similar but we
want to transform the raw context to summarized form
taking less storage space and provide improved and
efficient reasoning and machine learning. Researchers in
DBMS have also analyzed the time series data streams for
very large databases [12]. Here, they analyze the data
coming in continuous streams with time. They have
proposed solutions on how to manage, represent and store
the time series data streams. Aggregate data analysis [15]
has also been discussed in DBMS for quite sometime
which is also helpful for this kind of work.

7. Future Work & Conclusion

Synchronization of the different CCS modules is an
important consideration. If too many CCS modules start
performing summarization then the overall system
performance might degrade. Also there might be some
queries for the data that is currently being summarized;
we are working on implementing the appropriate locking
mechanism. Another interesting work is to implement
hierarchical summarization with different summarization
strength which allows inter-module negotiation [16] for
required summarization strength and confidence values.
For our future work, we also want to use the concept
present in [16] for summarization strength negotiation

8. References

[1] M. Weiser, The computer for the 21st century. ACM
SIGMOBILE 1999 Review

[2] Dey, AK., et al.: A Conceptual Framework and a
Toolkit for Supporting the Rapid Prototyping of Context-
Aware Applications. Anchor article of a special issue on
Context-Aware Computing, Human-Computer Interaction
(HCI) Journal, Vol. 16. (2001)

[3] Chen Harry, Tim Finin, and Anupam Joshi: An
Intelligent Broker for Context-Aware Systems. In:
Ubicomp 2003, Seattle, Washington

[4] Manuel Romén et al: Gaia: A Middleware
Infrastructure to Enable Active Spaces, In /EEE Pervasive
Computing, Oct-Dec 2002

[5] Hung Q. Ngo, Anjum Shehzad, Saad Liaquat, Maria
Riaz, Sungyoung Lee: Developing Context-Aware
Ubiquitous Computing Systems with a Unified
Middleware Framework. EUC 2004: 672-681

[6] Faraz Rasheed, et al: Context Summarization &
Garbage Collecting Context, , UWSI 2005, In the
proceedings of ICCSA 2005, published by Springer
Verlag

[7] Michael J. Franklin, Challenges in Ubiquitous Data
Management. . Informatics: 10 Years Back, 10 Years
Ahead, LNCS #2000, R. Wilhiem (ed)., Springer-Verlag
2001

[8] Mike Spreitzer, Marvin Theimer, Providing location
information in a ubiquitous computing environment, 4CM
SIGOPS Operating Systems Review , Proceedings of the
fourteenth ACM symposium on Operating systems
principles Dec 1993, Volume 27 Issue 5

[9] Alex Berson , Stephen J. Smith, Data Warehousing,
Data Mining, and OLAP, McGraw-Hill, Inc., New York,
NY, 1997

[10]Inmon, W.H., Building the Data Warehouse. John
Wiley, 1992

[11]D. Barbara et al., The New Jersey Data Reduction
Report, Bulletin of the /EEE Technical Committee on
Data Engineering December 1997 Vol. 20

[12]Lin Qiao et al: Data streams and time-series: RHist:
adaptive summarization over continuous data streams,
Proceedings of the eleventh international conference on
Information and knowledge management, Nov 2002
[13]Moore, D., 1. Essa, and M. Hayes, Exploiting Human
Actions and Object Context for Recognition Tasks, In
Proceedings of IEEE International Conference on
Computer Vision 1999 (ICCV°99), Corfu, Greece, March
1999

[14]Faraz Rasheed, et al: Towards using data aggregation
techniques in ubiquitous computing environment,
Accepted for publication in PerWare 2006, In the
proceedings of PerCom 2006, published by IEEE
[15]Joseph M. Hellerstein, Peter J. Haas, Helen J. Wang:
Online Aggregation. SIGMOD Conference 1997: 171-182
[16]Khedr, M. Karmouch, A: Negotiating context
information in context aware systems. [EEE Intelligent
Systems Dec 2004

