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Abstract— Automatic bone segmentation of Computed 
Tomography (CT) images is an important step in image-
guided surgery where segmentation errors could be critical. 
Previous attempts include intensity-, edge-, region-, and de-
formable curve-based approaches [1], but none claims fully 
satisfactory performance. In this study, we have tested most 
widely used active contour (AC) -based approaches to segment 
knee bones from CT imagery, namely the Gradient Vector 
Flow (GVF) AC, the original geometric AC, the geodesic AC, 
the GVF fast geometric AC, and the Chan-Vese multiphase 
AC without edges. Among the techniques, only the Chan-Vese 
multiphase AC demonstrated satisfactory performance, prov-
ing its suitability for bone segmentation from CT images.  
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I. INTRODUCTION  

Bone segmentation from Computed Tomography (CT) 
imagery is a critical component in computer-assisted ortho-
pedic surgery, but is a challenging task due to inhomogene-
ous bone structures, low contrast edges, and overlapping 
intensity values of bones. There have been a few attempts 
including intensity-, edge- (no active contours), region-, and 
deformable curve-based approaches as surveyed in [1]. 
However, none of them claims fully automatic procedures 
for bone segmentation. Also, the recent application of geo-
metric active contour (AC) to bone segmentation by Yao et 
al. [8] showed very limited performance. 

Recently, active contour-based segmentation techniques 
are being actively researched and developed. In general, 
there are two types of AC (or snake) models in literature 
today: parametric AC’s (such as the GVF AC) and geomet-
ric AC’s (such as the original geometric AC, the geodesic 
AC, the GVF fast geometric AC, and the Chan-Vese multi-
phase AC without edges). Except for the Chan-Vese snake, 
all other techniques utilize edge information of images. 

A recent survey [1] indicates that the AC models have 
rarely been applied toward bone segmentation of CT images 
despite their excellent capabilities for object segmentation. 
In this study, we have implemented all above mentioned AC 
approaches and evaluated them by segmenting knee bones 
from CT data to find the most suitable technique for bone 
extraction. Our preliminary results indicate that the Chan-
Vese multiphase AC produces excellent segmentation re-
sults, proving that fully automatic bone segmentation could 
be possible. 

II. METHODOLOGY 

In this section, we briefly review the AC models we have 
evaluated in this study. 

A. Gradient Vector Flow– based active contour 

The gradient vector flow (GVF) [2] refers to the defini-
tion of a slowly-varying, bidirectional external force that 
helps an active contour reach the object boundaries with a 
large capture range. One of its distinguished points is the 
ability to move into the boundary concavities. One can think 
of this flow field as the optimal direction to be followed to 
locate the object boundaries. 

In order to build up this field, an appropriate edge map 
function g(x, y) having larger values near the image edges is 
first chosen. To this end, while any gray-level edge map 
defined in the image processing literature could be a good 
candidate, a Gaussian-derived function on the image gradi-
ent is usually considered for its smooth characteristic: 
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where σE is variance and [Gσ * I] is the convolution output 
of the input image with a Gaussian kernel. 

The GVF [2] is defined as a two-dimensional vector field 
[u(x,y), v(x,y)] that minimizes the following energy func-
tional 

∫∫Ω ∇−∇++++= dxdygvugvvuuvuE yxyx
222222 ),()(),( µ  (2) 

where ux, uy, vx and vy are the spatial derivatives of the field 
and µ a noise-control parameter. 

This functional keeps the GVF field nearly same as the 
gradient of the edge map, ∇g, in the neighborhood of the 
boundaries, where |∇g| is large. At the same time, the field 
still have significant values in the homogeneous regions, 
where |∇g| gets close to 0, via a diffusion process.  

One can optimize [u(x,y), v(x,y)] using the gradient de-
scent method and the calculus of variations 
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where gx, gy are the spatial derivatives of g.  



In [2], a parametric AC using the normalized GVF 
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for boundary extraction in the following way, 
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where C(p) = [x(p), y(p)]: [0, 1]→R2 is the parameterized 
curve, α and β the adjustment constants. 

Such a flow depends on the parameterization of the curve 
and cannot topologically change to track multiple objects. 
Also it involves the second and fourth order derivatives that 
are difficult to estimate. It is, however, relatively free of the 
initial conditions and can deal with concave regions. More-
over, GVF AC application in bone segmentation, where the 
multiple-object extraction is not necessary, provides the 
advantage of fast convergence in comparison with others. 

B. Geometric AC and geodesic AC 

Geometric active contours [4, 5] are based on the theory 
of curve evolution [9] and the level set method [10]. In this 
framework, curves are implicitly represented via a Lipschitz 
function and their evolutions are performed using only 
geometric measures, making themselves independent of the 
curves’ parameterization.  

Toward the construction of the flow, let define φ(x, t) as 
a scalar Lipschitz function whose zero level set represents 
the geometric active contour. The original geometric active 
contour flow evolves φ according to 

 ( ) φκφ ∇+= 0Vgt  (5) 
where κ is the Euclidean curvature, V0 a constant, and 
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In Eq. (5), the curvature κ-based flow has the properties 
of smoothing the curve, while V0 shrinks or expands the 
contour along its normal direction at a constant velocity. 
The product g(κ + V0) determines the overall evolution 
speed of level sets of φ(x, t). At the same time, the main use 
of g has the effect of stopping the curve when it reaches to 
the object boundaries. 

In contrast with parametric AC’s, the geometric flow is 
topology independent and thus allows the AC to detect 
multiple objects. This scheme works well in general for 
objects that have good contrast. In cases where there are 
high variations of gradient as well as gaps along the edge, 
this contour, however, tends to pass through the object 
boundary. To overcome this limitation, the following evolu-
tion flow, called the geodesic AC flow, was proposed in [6, 
7, and 13] and can be expressed as 

 ( ) φφκφ ∇⋅∇+∇+= gVgt 0  (6) 
Comparing with the old model given in Eq. (5), we see 

that the extra stopping term (∇g ⋅ ∇φ) is used to increase the 
attraction of the evolving contour towards the boundary, 
especially when it has different gradient values and/or gaps. 

C. GVF fast geometric AC 

Inspired from the observations that the NGVF consists of 
the direction to be followed to reach the object boundaries 
and that evolving the contour in the direction of its normal 
is a main characteristic of the geometric active contour flow, 
Paragios et al. [3] proposed an integration of NGVF into the 
geometric AC: 

( ) )()()(]ˆ,ˆ)[)(1(.)( pNpHpNvupHgptC +⋅−+= βκ  (7) 
The level set implementation of this flow can be ex-

pressed as 
( ))(]ˆ,ˆ)[)(1()())((.)( pvupHppHgpt φφβκφ ∇⋅−−∇+=  (8) 

where N(p) is the inward Euclidean normal of the curve and 
)(]ˆ,ˆ[))(]ˆ,ˆ([)( pNvuepNvusignpH ⋅−⋅= δ , with δ a scale factor, 

has significant values when the normal and the NGVF are 
close to orthogonal. 

In the above flow, the use of κ has the effect of regulariz-
ing the propagation, and the use of (1- |H(p)| ) (NGVF ⋅ ∇φ) 
has the effect of a bidirectional flow that moves the curve 
towards object boundaries from either sides, while the re-
maining term H(p)|∇φ| has the effect of an adaptive balloon 
force used to determine the evolution when the bidirectional 
flow term becomes inactive. Similar to that of the geometric 
AC, the overall speed of this curve evolution is coupled 
with the edge-driven information via a stopping term g. 

D. Chan-Vese multiphase AC without edges 

Chan and Vese proposed in [11] an alternative form of 
AC, called AC without edges, based on the Mumford and 
Shah functional for segmentation [14] and level set frame-
work [10]. Unlike other level-set-based AC’s which rely 
much on the gradient of the image as the stopping term and 
thus has unsatisfactory performance in noisy images, the 
Chan and Vese model does not use the edge information but 
utilize the difference between the regions inside and outside 
of the curve. 

To this end, a signed distance function φ(x,y) is used to 
represent the curve C such that 
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In this case, the image is assumed to be consisted of two 
areas with approximately piecewise-constant intensities, of 
different value cin and cout. The arbitrarily initialized active 
contour C will be placed exactly on the boundary of these 
two regions if both differences between cin and image inten-
sities inside C, and between cout and image intensities out-
side C are minimized. Those amounts of dissimilarities are 
therefore playing the role of an external evolution force in 
the level set formulation of this model: 
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where u0(x,y) is the given image, ν a smoothing constant 
and c1 and c2 respectively the average intensities inside and 
outside C at the current instant. 

This flow evolves the AC, looking for a two-phase seg-
mentation of the image, given by u(x, y) = cinH[φ(x, y)] + 
cout(1 − H[φ(x, y)]), where H is the Heaviside function:  
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The main advantages of the Chan and Vese snake over  
other active contour models are 1) it automatically detects 
interior contours and 2) the initial curve can be placed any-
where in the image. 

For multiphase case, we can write the illustration formu-
lations for four phases or classes (and therefore using the 
two level sets functions φ1, φ2) as 
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where c11(φ) = average(u0) in {(x, y): φ1(x, y)>0, φ2(x, y)>0} 

c10(φ) = average(u0) in {(x, y): φ1(x, y)>0, φ2(x, y)<0} 
c01(φ) = average(u0) in {(x, y): φ1(x, y)<0, φ2(x, y)>0} 
c00(φ) = average(u0) in {(x, y): φ1(x, y)<0, φ2(x, y)<0} 

III. EXPERIMENT RESULTS 

To evaluate the suitability of AC’s toward bone segmen-
tation, we applied the mentioned five techniques to a set of 
16 CT image slices covering knee regions. We considered 
the segmentation is satisfactory if the AC correctly find the 
bone boundaries visually. However, unsatisfactory, if the 
AC does not converge to the correct boundaries.  

Figs. 1-4 show the segmentation results obtained using 
the GVF, the GVF fast geometric, the original geometric, 
and the geodesic AC respectively. In these cases, the initial 
contours were placed inside the bone regions because the 
outside-initialized contours tend to stop at the outter bound-
ary and can never evolve towards the inner one as expected. 

The lower left part of the GVF snake after a certain num-
ber of iterations could not propagate anymore because the 
NGVF in that area is close to orthogonal to the inward nor-
mal of the curve as shown in Fig. 1 (c). This is plausible 
when dealing with noisy images where some noise can be 
accidentally considered as line segments. To solve this 
problem, the Gaussian-derived edge map function should be 
more stringent, but it, in turn, smoothes the edges as well. In 
this situation, the balloon force in the GVF fast geometric 
AC model in Eq. (8) can help to overcome this limitation. 

However, as shown in Fig. 2 (c), it tends to pass through 
and thus cannot stop at the desired but weak edges. 

On the other hand, although the geometric AC model in 
Eq. (5) can deal with multiple objects, it suffers from the 
same problem of the GVF fast geometric AC. Comparing 
Figs. 3 (c) and 4 (c), we can see that the geodesic AC with 
the extra stopping term that pulls back the boundary-
passing-through contour still does not yield satisfactory 
performance in the blurred bone boundaries of CT images. 

In Fig. 5, we show that the Chan and Vese multiphase 
(i.e., four phases with two level set functions) AC without 
edges can successfully find bone boundaries with high gra-
dient variations. With the robust initialization as shown in 
Fig. 5 (a), where the AC evolution is demonstrated, the AC 
finds correct boundaries of all given slices. This model 
works well in this case because it does not deal with edge 
information and does not depends on the initial conditions. 
The only factor determining its performance is the differ-
ence of intensity inside and outside the bone regions.  

(a) (b) (c) 
Fig. 1. GVF AC evolution: (a) – (c) t = 0, 25, and 125 iterations 

(a) (b) (c) 
Fig. 2. GVF fast geometric AC evolution: (a) – (c) t= 0, 150, and 300 sec 

(a) (b) (c) 
Fig. 3. Geometric AC evolution: (a) – (c) t= 0, 25, and 50 sec 

(a) (b) (c) 
Fig. 4. Geodesic AC evolution: (a) – (c) t= 0, 70, and 140 sec 

IV. DISCUSSION AND CONCLUSION 

We have presented the evaluation results of various ac-
tive contour-based techniques toward knee bone segmenta-
tion from CT images. The results show that most edge-
based AC’s failed to detect correct boundaries of the bone, 
but the Chan-Vese multiphase AC without edges succeeded. 
The evaluation results indicate that the edge-based AC’s 
suffer from high sensitivity to noise, low-contrast bounda-



ries, and difficulty in getting distinct bone edges. However, 
the AC without edges showed robustness in segmenting the 
bone correctly with some advantages such as robustness in 
curve initialization, automatic detection of inner contours, 
and ability to represent different objects and their bounda-
ries. We consider that the region-based AC without edges 
could be a preferred choice in the automatic bone segmenta-
tion work.  
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Fig. 5. Segmentation results using the Chan – Vese multiphase AC without edges: a) Initial contours and their evolution.  

b) CT images in Column 1 and 3 and segmented bone regions in Column 2 and 4.  
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