

Abstract— A roaming user in ubiquitous environment should
have access to different services anywhere anytime. In an
infrastructure based smart environment, user acquires this
facility from the middleware. Syntax based service discovery
has proven to be inadequate for flexible interaction between
user and the middleware; context based semantic matching is
necessary. This paper shows the use of ontology to facilitate the
semantic discovery of services in a ubiquitous middleware
named Context Aware Middleware for Ubiquitous System
(CAMUS).

I. INTRODUCTION
ith the increase of processing power, mobile devices
are now hosting more resource intensive applications

[1]. Current trend is to make the handheld a personal assistant,
to make it the controller of all the devices. As an example, a
person carrying a PDA will like his device to control the
office, set up a meeting, or to print a document.

To make intelligent decisions, the PDA needs to know its
surroundings or the context. However, the PDA may not have
all the equipments to infer all the contexts it needs. Moreover,
it does not have the model of the domain or the semantic
meaning of the world that is very necessary to infer high level
context from low level sensor data. A ubiquitous middleware
can provide the required contexts through context services to
the application residing in the PDA. Middleware also
provides flexible discovery of device services so that the
application can control the environment through those
services. Towards that end, we built Context Aware
Middleware for Ubiquitous System (CAMUS) [2], [3].

CAMUS is a distributed middleware built on jini‘s [4]
Service Oriented Architecture (SOA). However, CAMUS is
not the only context aware middleware; there are other
middlewares out there. To name a few: GAIA [5], AMUN
[6], SOCAM [7] which are built on CORBA [8], JXTA [9]
and OSGI [10] respectively. Our focus is not to show contrast
with other middlewares rather to show the specialty of the
service delivery mechanism of our middleware.

In ubiquitous environment, an easy and flexible
mechanism is needed to deliver the services to the
applications or users. User interaction steps should be

Manuscript received July 01, 2006. This research was supported by the

MIC (Ministry of Information and Communication), Korea under the ITRC
(Information Technology Research Center) support program supervised by
the IITA (Institute of Information Technology Assessment) in collaboration
with SunMoon University. Professor Young-Koo Lee is the corresponding
author.

The authors are with Real-Time & MultiMedia Lab, Department of
Computer Engineering, Kyung Hee University, 449-701, Republic of Korea.
Their emails are {kamrul, lenin,sylee}@oslab.khu.ac.kr, yklee@@khu.ac.kr
respectively.

reduced for mobile devices. The service discovery framework
and the application should negotiate between themselves
without explicit interference of the user. The negotiation can
be enabled through semantic annotation of the services.
Though lot of researches are going on to add semantics to
web services [11], [12], [13], little effort has been made to
enable semantic discovery of middleware services in
ubiquitous environment. Presumably, the reason is that
applications are built specifically for a middleware in a single
domain; for example middleware for smart home, smart
office etc. On the contrary we model CAMUS for multiple
domains such as: Home, Office, Super Markets, where users
will carry their PDAs with smart applications running on
them. In this multi domain environment, a user may need to
rediscover the services or find alternative services as he
moves to another domain. Currently, none of the well-known
middlewares such as CORBA, JINI, JXTA, OSGI (see [14]
for survey) and the ubiquitous middlewares built on them can
provide semantic service discovery. They can only provide
attribute, value pair based matching, which is pretty
rudimentary for our requirements. So, we put our efforts to
add semantics to the CAMUS services.

There are several unique features of our work. First we
used OWL-S ontology for describing the middleware
services. This enables us to convert or wrap any of the
CAMUS services to web service. We included dynamic
attributes for device services and some Quality of Context
(QoC) attributes like freshness and precision for context
services. Lastly, the use of NASA space ontology makes
CAMUS domain ontology standardized and interoperable.

The rest of the paper is organized as follows. In section II,
we describe scenarios that motivate our research. In the
subsequent two sections we describe the architecture of
CAMUS and service discovery and registration mechanism
based on jini. Section V and section VI describes Service
ontology and query processing. We contrast our work with
existing approaches in section VII. We conclude with a
conclusion & future works section.

II. SCENARIO
Suppose the user was in his office and was viewing an

important document. As he comes to corridor, his document
is shown on a near by display. Then he drives his private car
to the market. He could not finish reading the document and
so after reaching the market, he asks his personal assistant in
the PDA to show the document again. It then looks for a
display but finds that all of them are occupied. So, from the
middleware in the market it gets a number of alternative
suggestions. The first suggestion can be to print the document
from the near by printer. A few minutes later, the user
remembers that he did not turn off the devices in his office. So

Semantic Service Discovery in a Middleware Based Ubiquitous
Environment

Md. Kamrul Hasan, Lenin Mehedy, Sungyoung Lee, Young-Koo Lee

W

he starts the room control application, which connects to the
middleware in his office building via web, gets the status of
the devices in his room and adjusts them accordingly.

Here we will point out a number of issues regarding service
discovery. First, we assume the user was being tracked by an
RFID tag attached to the PDA inside his office room. The
whole office building cannot be furnished with RFID tags.
So, when he comes out of his office room, he is tracked by a
WLAN tracking system. The quality of these services varies.
As we can assume the RFID system is more precise than the
WLAN tracking, the context services need to be tagged with
quality of service attributes like precision and freshness, so
that the application chooses the context services accordingly.
Second, some devices have dynamic attributes, like the
display can be occupied or the printer may be out of toner, the
load of the printer may be high. These attributes should be
updated as the values change. Third, the discovery
mechanism should not stop even if there is no device of a
given service type. It should look into the service type
hierarchy and find a closest type of service as an alternative.
Fourth, as the user moves out of his office domain, the
services may not be accessible through the jini mechanism;
we may need to access them as web services. The use of
semantic web service description mechanism or service
ontology can help us warp a jini service to a web service as
needed without much effort. Fifth, the market may not be a
CAMUS domain; it can be a middleware from other
providers. Even in that case, the personal assistant should be
able to interact with the middleware. To restrict the scope we
will not discuss the fourth and fifth point in this paper.

III. ARCHITECTURE
CAMUS (see Fig. 1) is a context aware middleware based

on jini. Currently CAMUS hosts two types of services,
context services and device services. Context services uses
CAMUS infrastructure for their operations like location
service,

Fig. 1. Architecture of service discovery mechanism on
CAMUS

activity recognition service etc. The services receive
quantized features from Feature Extraction layer and map the
features into context in the Context Mapping layer. The
contexts are then put into the Context Repository. Contexts
are made following the CAMUS domain ontology which is
actually the space ontology from NASA [15]. Context
services are built to provide these contexts to the applications.
Device services, on the other hand, are actuators or
controllers to the devices. The context services, applications
and the device services form a close loop and keep the
environment controlled.

The top layer of CAMUS is the Service Delivery. It is the
interfacing module with the application. It has a sub module
named Service Delivery Manager that discovers and delivers
the services to the application. Service Delivery Manager has
a lookup and registration mechanism that is specialized for
jini clients. We are going to describe that in the next section.
Service Delivery Manager uses the ontology stored in the
Service Ontology Repository for its discovery mechanism.
The dotted component Web Service Manager and the
corresponding Application are not yet developed and left as
our future work.

IV. SERVICE DISCOVERY AND REGISTRATION MECHANISM
Services advertise themselves with attributes and the

services are needed to be discovered and delivered to the
applications with maximum flexibility. Services should
provide service name, service type, service location, vendor,
and any other attributes that can help identifying the service.
For example, in case of a printer service, the attributes can be
service type, service name, service location, resolution, load
etc. When an application wants to locate a service, it provides
a set of query parameters. These parameters are compared
with the available services’ attributes and the matched service
is returned to the application.

Service
Discovery Service

Discovery

Application

CAMUS

Application
with

Web Service
Execution
capability

Feature Extraction

Feature Context Mapping

Context Repository

Context
Services

Device
Services

Service Delivery

Service Deli-
very Manager

Web service
Manager

Service ontology Repository

Fig. 2. Registration and discovery mechanism of CAMUS
services

In CAMUS, we developed the discovery mechanism
without modifying JINI lookup service. We expose Service
Delivery Manager as a JINI service. When a service registers
with the lookup, a notification is sent to Service Delivery
Manager. It then asks the service to provide its ontology
string by calling the remote method getOntology(). It
then associates the service id with the ontology and puts the
ontology in the Service Ontology Repository. When the
service expires, lookup sends a notification to the Service
Delivery Manager. Service Delivery Manager gets the
service id, and removes the ontology from its database.

V. SERVICE ONTOLOGY
The purpose of ontology is standardization. So, we should

use well defined semantics to describe our services. We
modeled our context and devices as services following the
concept of web service and we annotated those services using
OWL-S [16].

OWL-S is a language to describe web services
semantically. It supplies a set of markups for describing the
properties and capabilities of web services in unambiguous,
computer-interpretable form. Services are represented by
three things: profile, process and grounding.

Fig. 3. A high level view of OWL-S ontology

Profile describes the service. It provides information
needed by the discovery manager. Process model describes
the working procedure of the service. Service grounding
specifies communication protocol, message formats, and
other service-specific details such as port numbers used in
contacting the service.

Generally speaking, the service profile provides the
information needed for an agent to discover a service. As our
current system does not use automated service execution, we
did not use service process and service grounding. OWL-S
profile was enough to serve our purpose.

A. Service Hierarchy
In a ubiquitous environment, there can be thousands of

services. One very natural technique to manage them
effectively or discover them with flexibility is to organize
them in categories. Service hierarchy naturally incorporates
subsumption relationship among services.

We implement the service hierarchy using OWL profile
hierarchy [16]. OWL-S profile does not define any fixed
hierarchy of services, it is left open to market trend. So, for
our purpose, we define all the middleware services as
CamusServices. CamusService has two subcategories:
ContextService and DeviceService. ContextServices are
mainly context aggregation services that provide graceful
delivery of context to the application. Currently, we have
only three such services: LocationAggregator,
ActivityAggregator and EnvironmentalAggregator.
DeviceServices can be InputDeviceService or
OutputDeviceService. Fig. 4 shows the profile hierarchy for
CAMUS services.

Fig. 4. A view of CAMUS service classes generated by Protégé [17]

B. Service Attributes

B.1. Defining static and dynamic Attributes

Services may have static or dynamic attributes. For example,
load of a printer is dynamic property that needs to be retrieved
from the service periodically. We consider both types of
attributes in our implementation. We used OWL-S
<profile:Parameter> and
<process:Parameter> to define the static attributes of
services. However, OWL-S does not provide any mechanism
to state dynamic attributes in services. So we extended the
<process:Parameter> class as
<camus:DynamicParameter> and added an additional
property hasUpdateInterval in that.

When a service registers with the Service Delivery Manager,
the Service Delivery Manager gets the ontology from the
service, and looks for any DynamicParameter tag in it. If
it gets any Dynamic parameter, it starts a daemon thread that
fetches the value from the service periodically as specified in
the property <camus:hasUpdateInterval>. The
ontology snippet below shows the ontology for a printer
having the dynamic attribute hasLoad:

Supports

Described by Presents

Provides Service

Profile
Process

GroundingResource

What the
service does

How it does

How to
access it

<PrintingService rdf:ID="RTMM_Printer">
.
.

<profile:hasParameter>
<camus:DynamicParameter rdf:ID="hasLoad">
<process:parameterValue
rdf:parseType="Literal">0</process:parameterValue>
<camus:hasUpdateInterval>60
</camus:hasUpdateInterval>
<process:parameterType rdf:datatype=
"http://www.w3.org/2001/XMLSchema#anyURI">
Integer</process:parameterType>
</process:DynamicParameterParameter>
</profile:hasParameter>
</PrintingService>

The daemon threads uses polling mechanism to fetch the

dynamic attributes which may create network congestion and
overhead on the middleware. So, we employed a separate
interrupt mechanism also. Service delivery manager provides
an interface method updateAttribute(). In this case,
the service is responsible to decide when to update the
dynamic attribute value. If the service updates the attribute
value manually, the timer of that dynamic attribute in the
service delivery manager is shifted by the time specified in
hasUpdateInterval.

The addition of new ontology makes our implementation
domain specific. We argue that, as
<camus:DynamicParameter> is inherited from
<process:Parameter>, applications from semantic web
domain (if CAMUS services are opened as semantic web
services) can still consider it as <process:Parameter>
and continue their operation.

B.2. Quality of Context (QoC) attributes

Fig. 5. Layers of context provisioning in CAMUS

Contexts come from different sources. A location context
provider can be based on RFID tags or WLAN signal strength.
Context Providers reside in the Context Mapping layer and
continuously formulate contexts and store them in the context
repository (see Fig.5). Context Services based on these
contexts should provide some hints to the application about
the quality of the contexts they are providing. So, we include
two QoC attributes in Context Services namely, precision and
freshness. Precision is the accuracy of the service where as

freshness denotes the update interval of the context. Rather
than using exact units to measure them, we use a scale of ten.
The higher the value, the better the precision or freshness.

VI. QUERY PROCESSING
In CAMUS, services can be retrieved based on service

category or service attributes. CAMUS can also provide any
alternative service if the default matching fails. However, we
do not switch between ContextServices and DeviceServices.
Currently the system provides three kinds of operators:
comparison operators (Equals To, Greater Than, Less Than,
Not Equal), Like operator and Near operator. Equal To
operators, if used exclusively, give the EXACT matching as
jini provides. However, other comparison operators and Like
operator give flexible service matching. Service category
attributes and Near operators are evaluated semantically
using the OWL-S ontology and the existing CAMUS
ontology. Near operators provide context based semantic
search utilizing CAMUS. We also provide mechanism to
relax some of the query attributes if the default query fails.

Application provides a query array of 4-tuples for
matching, where each of the 4-tuples consists of attribute
name, operator, attribute value and relaxation (yes/no). An
example query is like this:

SerivceCategory Equals To PrintingService Yes
hasName Like RTMM No
hasSpeed Greater Than 10 Yes
hasLoad Less Than 30 Yes
hasLocation Near Prof No
We use Jena [18] to browse through the service ontology

and retrieve the appropriate service. We generate an RDQL
[18] query from the array of 4-tuples excluding the tuples
containing Near operator. If we get an empty result set, we
make the RDQL again, discarding the 4-tuples that have
relaxation equal to “yes”.

Then we shortlist the result set based on the Near operator.
If the resulting service set is empty after the short list, we
reevaluate the services based on only the 4-tuples with Near
operator having relaxation No. If the final service set is still
empty and serviceCategory attribute is relaxed in the query
array, we try to find an alternative service. For this, we find a
sibling serviceCategory in the hierarchy and run the query
again with the query array. In this case, we discard those
attributes that are not present in the sibling serviceCategory.

A. Near operator evaluation

We explain the evaluation of Near operator using the
4-tuple “hasLocation Near Prof No”. First, we get the
location of Prof from CAMUS. We developed our location
ontology based on the space ontology developed by NASA
[15]. The ontology provides tags to model the adjacency,
containment relationship. The ontology also provides tags to
model vertical spaces which are essential to represent floors.

Context Mapping

Sensor ….. Sensor Sensor …….. Sensor

Context
Provider

Context
Provider

Context
Repository

Context
Service

Context
Service

<owl:ObjectProperty rdf:ID="adjacentTo">

<owl:ObjectProperty rdf:ID="contains">

<owl:ObjectProperty rdf:ID="outside">

<owl:ObjectProperty rdf:ID="inside">

<owl:ObjectProperty rdf:ID="above">

We retrieve the list of regions or rooms that are adjacent to
Prof’s room or region and then keep those services from the
result set which are located in the same room of Prof or
adjacent to it. If the resulting service set is empty after the
short list, we reevaluate the services based on only the
4-tuples with Near operator having relaxation No. However,
the meaning of near varies from application to application.
Our current prototype cannot handle the various meaning of
the near operator.

VII. RELATED WORKS

Lot of efforts have been put to make web services
semantically enabled [11], [12], [13]. We bring those
techniques to middleware based service environment. This
paper is an extension of our previous paper [19] where we
described the need for semantic context service discovery. In
this paper we discuss on both context and device service. We
include the Quality of Context attribute for context services
and dynamic attributes for device services. We also
incorporate some flexibility in service discovery so that the
application needs less interaction with the middleware. In this
respect, we investigated in middleware domain like CORBA,
jini and JXTA. We have found one recent paper that tries to
add dynamic attributes to CORBA services [20]. The authors
were inspired by a similar implementation [21] on jini that
could acquire dynamic attribute values from services
periodically. But both of the works lack semantic service
discovery mechanism. Our effort is to add semantic notations
to jini services that can handle dynamic attributes and can
also provide alternative or near by services, searching in the
ontology semantically. In our implementation we use OWL-S
with Jena which provides well accepted ontology and best
suited reasoning mechanism for ontology, provides
mechanism for service categorization.

VIII. CONCLUSION AND FUTURE WORKS

Ubiquitous computing envisions the accessibility of
services from any where, any place. In this respect, a situation
may occur that a user may switch to a different domain other
than CAMUS and still want to access smart services of
CAMUS. To support this kind of accessibility, we need to
publish the services as web service and this motivates our
next effort to define the mechanism to publish middleware
services into the semantic web. The use of OWL-S to
represent the services is our first step towards that goal.

REFERENCES
[1] Intel personal server:
http://www.intel.com/research/exploratory/personal_server.htm
[2] Q. Ngo Hung, Anjum Shehzad, Saad Liaquat Kiani, Maria Riaz, Kim Anh
Ngoc, Sungyoung Lee: Developing Context-Aware Ubiquitous Computing
Systems with a Unified Middleware Framework. The 2004 International
Conference on Embedded & Ubiquitous Computing (EUC2004),
Springer-Verlag Lecture Notes in Computer Science, August 26-28 2004,
pp.672-681
[3] CAMUS Technical Report: http://oslab.khu.ac.kr/
[4] JINI: http://www.jini.org
[5] M. Román, et al.: Gaia: A Middleware Infrastructure to Enable Active
Spaces. IEEE Pervasive Computing, Oct-Dec 2002, pp. 74-83
[6] Von Wolfgang Trumler, Jan Petzold, Faruk Bagci, Theo Ungerer: AMUN
- Autonomic Middleware for Ubiquitious eNvironments Applied to the Smart
Doorplate Project. International Conference on Autonomic Computing
(ICAC-04), New York, NY, May 17-18, 2004
[7] Tao Gu, Hung Keng Pung, Da Qing Zhang: A service-oriented
middleware for building context-aware services. Journal of Network and
Computer Applications 28 (2005) 1–18
[8] CORBA: HTTP://WWW.CORBA.ORG
[9] Jxta: http://www.jxta.org
[10] OSGI: http://www.osgi.org
[11] Xiaocheng Luan: Adaptive Middle Agent for Service Matching in the
Semantic Web: A Quantitative Approach. PhD Thesis, Department of
Computer Science and Electrical Engineering, University of Maryland,
Baltimore County, UMBC eBiquity Publication, Nov 2004
[12] Lei Li, Ian Horrocks: A Software Framework for Matchmaking Based
on Semantic Web Technology. International WWW Conference, Budapest,
Hungary, 2003
[13] M. Klein, et. al.: Towards High-Precision Service Retrieval. IEEE
Internet Computing, February 2004
[14] Feng Zhu, Matt Mutka, and Lionel Ni: Classification of Service
Discovery in Pervasive Computing Environments, MSU-CSE-02-24,
Michigan State University, East Lansing, 2002
[15] NASA Space Ontology: http://sweet.jpl.nasa.gov/ontology/space.owl
[16] OWL-S: http://www.daml.org/services/owl-s/
[17] Protégé: http://protege.stanford.edu
[18] Jena, A Semantic Web Framework for Java: http://jena.sourceforge.net/
[19] Maria Riaz, Saad Liaquat Kiani, Sungyoung Lee, Young-Koo Lee:
Incorporating Semantics Based Search and Policy-Based Access Control
Mechanism in Context Service Delivering. IEEE Fourth Annual ACIS
International Conference on Computer and Information Science (ICIS 2005),
14-16 July 05, Jeju - Korea, pp.175-180
[20] Oussama Kassem Zein, Yvon Kermarrec: An approach for Service
Description and a flexible way to discover services in distributed systems.
International Symposium on Information Technology: Coding and
Computing (ITCC), Vol (1) 2005: 342-347
[21] Choonhwa Lee, Sumi Helal: Context Attributes: An Approach to Enable
Context-awareness for Service Discovery. Proceedings of the 2003
Symposium on Applications and the Internet (SAINT’03)

