
Human Identification Through Image Evaluation
Using Secret Predicates�

Hassan Jameel1, Riaz Ahmed Shaikh1, Heejo Lee2, and Sungyoung Lee1

1 Department of Computer Engineering, Kyung Hee University, 449-701 Suwon,
South Korea

{hassan, riaz, sylee}@oslab.khu.ac.kr,
2 Department of Computer Science and Engineering, Korea University Anam-dong,

Seongbuk-gu, Seoul 136-701, South Korea
heejo@korea.ac.kr

Abstract. The task of developing protocols for humans to securely au-
thenticate themselves to a remote server has been an interesting topic
in cryptography as a replacement for the traditional, less secure, pass-
word based systems. The protocols proposed in literature are based on
some underlying difficult mathematical problem, which are tuned so as to
make them easily computable by humans. As a result these protocols are
easily broken when desired to be efficiently executable. We present a Hu-
man Identification Protocol based on the ability of humans to efficiently
process an image given a secret predicate. It is a challenge-response pro-
tocol in which a subset of images presented satisfies a secret predicate
shared by the challenger and the user. We conjecture that it is hard to
guess this secret predicate for adversaries, both humans and programs.
It can be efficiently executed by humans with the knowledge of the secret
which in turn is easily memorable and replaceable. We prove the security
of the protocol separately for human adversaries and programs based on
two separate assumptions and justify these assumptions with the help of
an example implementation.

1 Introduction

The problem of constructing human identification protocols is an important one
in the cryptographic community. That is to say, how can a human H authenticate
to a remote server C, without using any computational aid? To make matters
worse, the communication link between H and C is controlled by an adversary
who can either passively listen to their conversation or actively interfere at will.
Under such conditions, it is desirable that this adversary should not be able
to masquerade as H even after observing a number of authentication sessions.
� This research was supported by the MIC (Ministry of Informations and Communi-

cations), Korea under the ITRC (Information Technology Research Center) support
program supervised by the IITA (Institute of Information Technology Assessment)
incollaboration with SunMoon University. The corresponding author is Dr. Sungy-
oung Lee.

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 67–84, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

68 H. Jameel et al.

Notice that traditional password based schemes are completely insecure in this
environment, in the sense that even the remote terminal which is being used
by H to perform the authentication protocol is not trusted. It might contain
malicious software like key-loggers, that can grab and record everything that H
types, or someone might be using a hidden camera to see the alpha-numerics
being typed. Ideally, H should be presented with a set of challenges, which H
processes efficiently with the help of some shared secret and replies such that
the responses yield little or nothing about the secret. The amount of processing
required on H ’s part defines the feasibility of the protocol. What kind of protocol
is practical for humans? We are not particularly good at numerical calculations;
however we can be reasonably proud of our image processing abilities. If we can
pose a challenge that involves evaluating an image based on some secret criteria
then we might be able to construct a human executable protocol.

Consider the example of an IQ test based on images. The purpose of such a
test is to check a person’s intellectual abilities. The hardness of these questions
is relative; for some these tests are harder than for others. But once a particular
hint for a question is given, it would be answered promptly unlike someone
who has to solve the question without any aid. If we assume that the hint to the
question is a secret shared between the questioner and the human, then those who
know the secret hint before hand can reply instantly whereas others without the
knowledge of the hint would take considerably longer time. Furthermore, since
we are involving images, the task of writing a computer program to answer these
questions seems extremely hard as well, much like the automated CAPTCHA
tests [6] that most humans can solve but computer programs cannot pass with a
certain probability. The absence of such a “hint” makes the task of guessing the
answer hard even for a human adversary. Additionally and more importantly,
this “hint” can be renewed after even a small number of authentications as it
will not be hard for a human to remember a natural statement.

The idea of constructing secure and efficiently executable human identification
protocols using human’s cognitive abilities about picture processing is not new.
Matsumoto and Imai [1] were the first to propose a human identification protocol,
followed by Wang et al [2], Matsumoto [3], Yang Li and Teng [4], Hopper and Blum
[5] and Li [7]. All of these schemes can be implemented graphically. The idea is to
map the secret with a set of images. The user only has to remember the images
instead of a string of secret. This allows for easy secret recollection as humans can
easily recall images as compared to textual strings. However, the security of the
scheme relies on some underlying numerical problem like the Learning Parity with
Noise (LPN) problem in [5] and the images are only used as an aid for learning the
secret. Due to this fact, the complexity of these schemes is still a bit high, e.g. the
HB protocol of [5] requires more than 300 seconds on average by humans. More
recently, Weinshall [12] has proposed a scheme based on the SAT problem, which
was subsequently broken in [13]. Notice that even in their scheme, the secret is a
set of prespecified grid positions and in order to easily memorize these positions,
pictures are introduced. They do not make use of the underlying structure of the
images apart from using them as a memory aid. DeJa Vu[8] and Passface [9] are

Human Identification Through Image Evaluation Using Secret Predicates 69

purely graphical authentication schemes in which the user is asked to remember
a subset of secret pictures and is then asked to authenticate by choosing his/her
chosen images in a pool of pictures. A similar concept is to point and click secret
locations in an image as in [10]. Apparently, in these schemes the user does not
have to do any computational effort whatsoever. But this does not come without
a drawback. These systems are not secure if someone is observing the actions of the
user. If an adversary monitors the users’ selections, it will be pretty easy to learn
the secret images or locations. We argue that an image itself has a very complex
structure and features, and instead of using it just as a memory aid, we can use
the internal properties of images to pose challenges that can be efficiently executed
by humans. Additionally, we might relax the required number of authentication
sessions with a given secret, if the secret is easy to remember by a human and
can be changed without too much effort on H ’s part. From the previous efforts,
we can see that apart from the usual trade off between security, secret size and
computational time, we face the problem that if we want to renew the secret after
a small number of authentication sessions, it seems hard for a human to remember
the new secret immediately.

In this paper, we show that it is possible to construct a challenge-response
protocol, each challenge of which contains a kind of AI hard problem like CAPT-
CHA [6] for a computer algorithm. Moreover, the challenge is presented in such a
way that a human without the knowledge of the secret can make “little sense” of
the correlation between the elements of the challenge. We claim that such hard
problems exist, and a protocol based on these problems will be very hard to break
for adversaries, both humans and computer programs, while being efficiently
executable for the legitimate user. Exact quantification of the hardness of these
problems however remains an open issue.

2 An Informal Description of the Protocol

The central idea proposed in this paper is informally as follows: How can we
combine the notion of CAPTCHA (creating a challenge-response that is not
susceptible to bots) and secure user authentication that is not vulnerable to
shoulder surfing or sniffing? To accomplish this feat, we propose the following
protocol:

Setup. User and the server agree upon a secret that is a composite of the
following:

1. A simple question Q (which we will call a predicate) with only a binary answer,
such as “Does the picture contain a woman?”
2. A set of distinct random numbers a1, a2, . . . , ar; all between 1 and n.

Server to user. A list of n pictures that are uniformly distributed with respect
to the question Q above.

User to server. n-bit binary string such that for pictures numbered a1, a2,. . .,ar

the corresponding bits are answers to the secret question Q and for all the other
positions the bits are random.

70 H. Jameel et al.

The server accepts if the answer string is correct at the designated places. We
can do the online step repeatedly to amplify security. In the full version of the
protocol in Section 4, we permute the ai’s to make it harder for the adversary to
extract any information from the answer string. The probability of guessing the
correct permutation would be far less than that of guessing a correct random
ordering of numbers. Security is based on the fact that (i) a bot or a computer
program does not know the relationship between the pictures, and (ii) a human
watching the proceedings would not know which bits are significant, which in
turn will make it hard to guess the question being answered.

3 Definitions

We start with a set of definitions formalizing the notions of Identification Pro-
tocols and the new concepts introduced in this paper. We first define the notion
of an AI problem solver which is modified from the definition of an AI problem
in [6].

Definition 1. An AI problem solver is a function f : S → R, where S is a set
of AI problem instances and R ∈ {0, 1}∗is the answer alphabet. A family of AI
problem solvers is a map F : Keys(F)×S → R. Here Keys(F) denotes the set of
all AI problem solvers from S to R. Namely, if k ∈ Keys(F) then Fk : S → R is
an AI problem solver.

Notice that we specifically define a family of AI problem solvers instead of just
a single one. Such a family will allow us to distribute different secrets, namely
k ∈ Keys(F), to different users for authentication. The concept is similar to a
function family.

We define the (δ, τ)-hardness of an AI problem solver similar to [6]:

Definition 2. An AI problem solver f is said to be (δ, τ)-solved if there exists a

program A, running in time at most τ ,on an input s
R← S, such that

Pr
[
s

R← S : A (s) = f (s)
]

≥ δ

f is said to be (δ, τ)-hard if no current program is a (δ, τ)solution to f , and the
AI community agrees that it is hard to find such a solution.

Definition 3. A family of AI problem solvers is said to be (δ, τ)-hard if for all
keys k ∈ Keys(F), Fk is (δk, τk)-hard with δk ≤ δ and τk ≤ τ .

Definition 4. We say that a function family, F : Keys(F)×S → R is (λ (r) , τ)-
resilient against key recovery, if for all H running in time at most τ , we have:

Pr[k
R←Keys(F); b1b2 . . . br

R← {0, 1}r ;
s1s2 . . . sr ← S| Fk (s1)Fk (s2) . . . Fk (sr) = b1b2 . . . br;
k′ ← H (s1s2 . . . sr) : k = k′] < λ (r)

Human Identification Through Image Evaluation Using Secret Predicates 71

Notice that H is not shown the value of the function Fk at each of the ‘r’
inputs. H only knows that the answer to each input belongs to the range R. It
has to guess the correlation between the different inputs. Of course, the inputs
must have an internal structure in order for the above definition to make sense.
We do not elaborate this correlation between the inputs here as it will become
clear when we describe the security of our protocol against human adversaries,
instantiated with a suitable choice of the function family F in Section 6.

We restate the definitions of identification protocols and human executable
protocols from [5] for reference:

Definition 5. An Identification Protocol is a pair of probabilistic interactive
programs (H, C) with shared auxiliary input z, such that the following conditions
hold:

– For all auxiliary inputs z, Pr [〈H (z) , C (z)〉 = accept] > 0.9
– For each pair x 	= y, Pr [〈H (x) , C (y)〉 = accept] < 0.1

When 〈H, C〉 = accept, we say that H authenticates to C. The transcript of C
contains challenges c and that of H comprises responses r to these challenges.

Definition 6. An Identification Protocol (H, C) is (α, β, t)-human executable if
at least a (1 − α) portion of the human population can perform the calculations
Hunaided and without errors in at most t seconds with probability greater than
(1 − β).

Discussion on the definitions. We have separately defined a family of AI problem
solvers and an (λ (r) , τ)-resilient function family. This partition is due to the
fact that we want different security assumptions for a program and a human
adversary. For an adversarial program, we require that the actual hardness in
breaking our protocol relates to solving a function from the family of AI problem
solvers. The set of keys ‘Keys(F)’ need not be hidden from this program or more
strongly, the program might even be given the particular key being used and
asked to guess the value of the function at a new input. We conjecture that such
a program will still not be able to succeed but with a small probability. More
details will follow in the next sections. On the other hand, we require a rather
weak security assumption for human adversaries. Obviously, for a human the AI
problem solvers will not pose any problems by definition. Instead, we present a
(λ (r) , τ)-resilient function family to the human adversary. More specifically, we
hide the set Keys(F) from the human adversary; randomly select a key from this
set; draw a set of r inputs at random and ask the human adversary to guess the
key. Since we assume the function family is (λ (r) , τ)-resilient, the probability
of guessing the key is very small. We will present a function family F and argue
that it satisfies both these requirements. The same function family F can both be
a family of AI problem solvers and (λ (r) , τ)-resilient at the same time. Indeed,
we give an example of such an F .

72 H. Jameel et al.

4 Proposed Protocol

The main theme of our protocol as described in Section 2 is to present a hu-
man with a series of pictures that satisfy a certain predicate. The user answers
a pre-specified set of these pictures in an order determined by a hidden secret
permutation. The assumption is that the analysis of these pictures by a com-
puter program is extremely hard and even for a human adversary, the challenge
of guessing the secret predicate when the answers are given in a random order,
seems implausible. We first give a description of the protocol based on a generic
building block F , and give a detailed practical example of this building block in
Section 6.

Preliminaries. The following notations and functions will be used in the pro-
tocol and hence forth.

Perm (L, l) : Outputs the hidden permutation string P = q∗0p1q
∗
1p2q

∗
2 · · · plq

∗
l

of length L, obtained by first randomly selecting a permutation of the set
{1, 2, . . . , L} and then randomly selecting L− l locations in this permuted string
and replacing the numbers in the corresponding locations by 0’s. The non-
zero numbers are p1, p2, . . . , pl. Each q∗i is either null or a substring of 0’s and
|q∗0 | + |q∗1 | + · · · + |q∗l | = L − l.

Insert (P, a1a2 . . . al) : Given P = q∗0p1q
∗
1p2q

∗
2 · · · plq

∗
l and an l-bit binary string

a1a2 . . . al, outputs a binary string b∗0a1b
∗
1a2b

∗
2 · · ·alb

∗
l , where each b∗i is a random

binary substring whose length is equal to q∗i .

Note. Notice that in this procedure the human user has to input random bits
at the positions of q∗i ’s. This is an idealized assumption since humans may not
be able to generate truly random bits. We acknowledge this as a drawback but
use it nevertheless since it makes our analysis simpler.

Sep (P, r) : From the given P = q∗0p1q
∗
1p2q

∗
2 · · · plq

∗
l and an L-bit binary string

r = r1r2 . . . rL, does the following:

– r′ ← null
– For k = 1toL

• If P [k] 	= 0
∗ r′ ← r′||r [k]
∗ Output r′

Notice that, |r′| = l.
We are now ready to describe our protocol. After presenting the protocol

based on a generic building block F and defining the security of our protocol
under the assumed hardness of this building block, we will describe a suitable
instantiation of this building block in the next section. It is our thesis that the
proposed candidate satisfies our security requirements.

Human Identification Through Image Evaluation Using Secret Predicates 73

System Parameters. L, l and m; all positive integers.
Setup. H and C evaluate Perm (L, l) and keep the resulting hidden permu-
tation P as a shared secret. From a family of (δ, τ)-hard AI problem solvers
F : Keys(F) × S → {0, 1}, H and C randomly select a secret key k ∈ Keys(F).
C also sets S− = { }.
Protocol.

– Set j = 0
– While j 	= m or j 	= ⊥:

• C randomly chooses a binary sequence b1b2 · · · bL from {0, 1}L.
• for i = 1 to L:

∗ If bi = 1, C selects a random si ∈ S − S− such that Fk (si) = 1 and
updates S− ← S− ∪ {si}.

∗ Else C selects a random si ∈ S − S− such that Fk (si) = 0 and
updates S− ← S− ∪ {si}.

∗ Csets s = s1s2 · · · sL and sends it to H .
• For i = 1 to l:

∗ H computes F (spi). If it is 1, it assigns ai = 1 otherwise assigns
ai = 0.

• H sends r′ = Insert (P, a1a2 . . . al) to C.
• If Sep (P, r′) = F (sp1) ‖ F (sp2) ‖ . . . ‖ F (spl

), C increments j otherwise
C sets j = ⊥.

– If j = m, C accepts H .

It is easy to see that the probability of someone impersonating a legitimate
user by randomly submitting answers is 2−lm. We have defined the set S−, so
that once an input from a set S has been used, it should no longer be used again
for that particular user. In practice we can define two sets: S1 and S0 denoting
the sets whose elements evaluate to Fk (.) = 1 and 0 respectively. Each time an
input is used from this set, it is taken out of this set and never used for the same
user. The reason and practicality of this requirement will become clear when we
show a reasonable instantiation.

5 Security Analysis

5.1 Security Against Passive Adversarial Programs

An Identification Protocol (H, C) is (p, q) secure against passive adversaries if
for all computationally bounded adversaries A,

Pr [〈A (T q (H (z) , C (z))) , C (z)〉 = accept] ≤ p

Here T q (., .) represents the transcript of q communication sessions between H
and C. In the appendix, we assume that if B is a program, then even after
observing a certain amount of values of Fk (.), it cannot solve this function with
probability better than δ. With this assumption, we prove the following for our
protocol:

74 H. Jameel et al.

Claim 1. If F is a (δ, τ)-hard family of AI problem solvers, then for all adver-
sarial programs A:

Pr [(A (T q (H (z) , C (z))) , C (z)) = accept] ≤ 2δ − 1

Proof. See Appendix A.1.

5.2 Security Against Passive Human Adversaries

For a human adversary, we assume that F is a family of (λ (r) , τ)-resilient func-
tions. Hence it is not possible to extract the key k of a particular function Fk of
this family, when less than r of the instances are shown to a human adversary.
We can construct an experiment in which this adversary is also given a random
binary sequence of r bits. Obviously, this adversary has no advantage in detect-
ing the key k, if this sequence is truly independent of the choice of answers.
However if we give this adversary the true sequence of answers, then it might
have considerable advantage in detecting the secret key. All we need to show is
that our protocol does not reveal the true answers with all but a small probabil-
ity. Ideally, the answer string should be a pseudorandom binary string; however
we do not know how a human would be able to generate a cryptographically
secure pseudorandom string without any computational aid. The best we can
do is to introduce some randomness in the answer strings based on the secret
permutation and the random bits. We digress here to explain the need for secret
permutation and the random bits. Consider an adversary that randomly picks
up a permutation and the corresponding locations and tries to detect the key.
For a suitable choice of L = 10 and l = 5, the probability that the adversary’s
guess was correct is 5!

10!/
(10

5

)
≈ 2−22. If instead, we use a simpler procedure of

randomly selecting 5 locations (as in Section 2), then the adversary’s probability
of guessing the hidden locations is just 1/

(10
5

)
≈ 2−8. To achieve the same level

of probability, we would have to choose L = 24 and l = 12, which means that the
user has to remember more locations. This motivates the use of our procedure.

We show in Appendix A.2, that in a given round, the probability of the event
that the answer string returned by H is equal to the actual answer string (with-
out permutation and random bits) is less than 1

2r

(
1 + l

L2

)r
. Since our adversary

has no advantage in solving our protocol without guessing the random permu-
tation, it follows that the advantage of this adversary in breaking our protocol
is bounded by λ (r) and the above probability, as shown in the appendix.

5.3 Security Against Active Adversaries

We take the definition of an active adversary from [5]. We do not distinguish
between a human adversary and an adversarial program in this case. An identi-
fication protocol (H, C) is (p, q, r)-detecting against active adversaries if for all
computationally bounded adversaries A,

−Pr [〈H (z) , A (T r (H (z) , C (z)))〉 	= ⊥] < q
−Pr [〈A (T r (H (z) , C (z))) , C (z)〉 = accept] < p

Human Identification Through Image Evaluation Using Secret Predicates 75

Against active adversaries we have a natural defense thanks to the cognitive
abilities of humans. If a human can detect that a particular instance has been
replayed twice or more with a high probability, then he may reject C, hence ter-
minating the protocol session. Hence our protocol has an innate defense against
replay attacks. More specifically, let 1 − q be the probability that H can detect
an instance s′ being replayed. Obviously, this probability should be a function
of time and the specific iteration at which the instance is being replayed. Let S−

i

denote the variable defining the set S− after the ith query to C by H . Let Ai

be the event that an s′ was presented to H at the ith query, such that s′ ∈ Sj

for some j < i. Then,

Pr [H detects Ai] ≥ Pr
[
H detects Ar|s′ ∈ S−

1 ∧ s′ /∈ S−
r , 1 < j < r

]
≥ 1 − q

All other events will be predicted with greater probability. Thus with high prob-
ability the human will detect a replay challenge attack.

Notice however, that our protocol is not secure against another kind of attack:
the automated adversary intercepts the sequence from the server to the user, and
replaces one instance in that sequence by some other instance (taken from some
other source). If the user’s reply is rejected, the adversary now has two instances
for which it knows that the answers are different. After collecting a few such pairs,
all these pairs are displayed to a human adversary, which now has the instances
alongwith their answers. This attack, however would result in the termination of
the session, if successful. The protocol could be repaired to handle this kind of
active attack. Namely, we can allow the user to submit wrong answers about half of
the time. This would result in an increase in the number of rounds and would take
more time. We acknowledge it as a weakness in our protocol and leave a possible
efficient fix as a future work. There may be other active attacks from a combined
human-computer adversary and a thorough analysis is certainly required.

6 A Suitable Instantiation of F

We describe a procedure that seems a plausible candidate for an AI problem
solver as well as being (λ (r) , τ)-resilient at the same time. Our motivation is
the saying that a picture is worth a thousand words. A picture might satisfy
a variety of predicates. Consider as an example, the picture in Figure 1. How
many different predicates does this picture satisfy? To list a few:

– Does this picture present a cartoon?
– Is there a “nose” in this picture?
– Is there a woman in this picture?

And so on. In short, we can select a predicate, find a set of pictures that satisfy
this predicate and a set that does not. We present these pictures to a human
user in place of F in our protocol and we are sure that it will satisfy our goals.
Let Pic denote a collection of pictures and let pic be a member of it. Let Pred
denote the set of all predicates. We define the family of functions:

Q : Pred × Pic → {0, 1}

76 H. Jameel et al.

Fig. 1. A picture might represent a large number of concepts and contexts

Conjecture 1. Q defines a family of AI problem solvers.

The CAPTCHA project has a particular CAPTCHA named ESP-PIX [11], that
presents a set of pictures related to each other through some feature. The pictures
are rather obviously related to each other when viewed by a human; however it is
claimed that for a computer program it is extremely hard to find a common link
between the pictures. We present a similar but harder problem. In our protocol,
the pictures satisfying the predicate are intermingled with those that do not,
and we ask a computer program to tell whether the pictures are interlinked or
not.

Conjecture 2. Q defines an (λ (r) , τ)-resilient family of functions.

This claim seems hard to justify. Our claim is based on the belief that the fol-
lowing problem would be hard for a human. Namely, a human is given a series
of pictures as in Figure 2; is told that some of these pictures satisfy a given
predicate and some don’t, and is asked to guess the hidden predicate. Of course
without the knowledge of the answers to the predicate for each of these pictures,
this seems to be a hard problem. With the knowledge of the answers, we cannot

Fig. 2. A set of pictures, some or all of which satisfy a hidden predicate

say with a certain amount of confidence that a person might not be able to
guess the hidden predicate. We constructed our protocol in a way so as to hide
the answers, such that the adversary might not be able to gain advantage by
guessing the hidden predicate. An important question is: What kind of predicate
to choose? A predicate involving color differences like “Does the picture contain

Human Identification Through Image Evaluation Using Secret Predicates 77

the color red?” should most certainly not be used. Color difference is very easily
caught by the human eye. The predicate used in Figure 2 is “Does the object in
the image begin contain the letter “P” in its name?” Predicates like this, which
do not catch the human eye, are the likely candidates.

6.1 A User Friendly Implementation

For human users the parameters L = 10, l = 5 and m = 4 can be chosen.
Note that a random guess attack can only succeed with a probability 2−20 in
this case, which is more than the security of a 4-digit pin number. The user
is given a hidden permutation string say: 0098030502. When the user inputs
his ID, he is brought to a page containing 10 pictures in a 2X5 grid at the
bottom of which is a text box. The user answers by randomly picking ‘0’ or ‘1’
in place of the ‘0’s’ in the permutation string and answering the pictures in the
specified order corresponding to the digits other than the ‘0’s’. So, for example,
a possible answer would be 1011001101, where the underlined digits denote the
actual answers and the rest are random bits. The user would input the string
1011001101 and will go to the next series of 10 pictures if this answer is correct
at the specified positions. The procedure continues until 4 steps and the user is
accepted once all the 4 steps result in a success. The choice of using 10 pictures
in a challenge seems appropriate, as they can easily be displayed on the screen
as shown in Figure 3. A single picture would take around 5 seconds for a human

Fig. 3. An authentication step in our proposed protocol

to verify whether it satisfies the predicate or not. This would take around 100
seconds to execute the protocol. This amount of time seems reasonable if we use
the protocol only under certain circumstances such as when the user is trying to
log on through an insecure public terminal.

78 H. Jameel et al.

7 Limitations and Discussion

One might ask the question that how long the protocol should be run to keep a
desired security level. It is evident that based on our assumption, the protocol
can be safely executed for a number of times if we only consider adversarial
programs. How about human adversaries? We know an inherent weakness in
us humans; the more the work load, the less efficient we are. So if a human
adversary is given a collection of, say 2000, pictures and is asked to find the
hidden predicate, then he might not be able to examine all these pictures. In
order to make the task harder for a human adversary, we can have two or more
predicates connected through a truth clause. The user then checks whether the
picture satisfies the clause and answers accordingly. This will result in an increase
in execution time, but guessing the secret predicates will be much harder.

Another question is regarding the possible usage of our protocol. We insist
that our protocol should be used only in situations when a user is away from
the luxury and security of his personal computer or office environment. The user
might want to use our system when using a public terminal to log in for emails
while on a business trip. However, when he is back in his office or home, he can
use the normal password based system to log in to his computer. So, we can
safely use our system for a small number of authentications before the secret
predicate can be refreshed and a new hidden permutation can be used. The fact
that the secret predicate plus the hidden permutation is not a load on a human’s
memory (the hidden permutation being the size of a normal telephone number)
makes this switch very practical and reusable. Consequently, we can use this
system, for say 20 or 30 authentications before renewing the secret.

A modified version of the protocol, secure against general active adversaries is
also desirable; without making it infeasible or increasing the number of rounds.
The most important limitation is the selection of the predicates and selecting
appropriate pictures that satisfy these predicates. This can be done by a ded-
icated group from the service providers. We do not know however, if this task
can be performed by a computer or not. Automatically generated predicates and
pictures might prove helpful and will increase the practicality of our scheme. An-
other important direction is to find whether there exist other functions in place
of the predicate-image one. A function family whose soundness can be theoreti-
cally proved instead of being conjectured would certainly be a better candidate
than the one presented in this paper.

8 Conclusion

The problem of making secure human identification protocols in which a human
authenticates to a remote server has resulted in many efficient authentication
protocols over the years. These protocols try to make things easy for humans by
presenting them a challenge based on some mathematical problem which is easy
to compute but difficult for an adversary to crack. However, the efficiency of
these protocols lie in the user friendly representation. Instead of using computa-
tional problems, we can look for problems in domains where humans are better

Human Identification Through Image Evaluation Using Secret Predicates 79

than computers, like image evaluation. However, to construct an identification
protocol, we need some problem that is not only hard for computer programs
but for human adversaries too. We have shown that it is possible to construct a
protocol based on human’s excellent image processing abilities such that defeat-
ing the protocol is hard even for the human adversaries. The proposed problem
based on evaluating an image through a secret predicate seems to be hard to
crack even for human adversaries who do not have the knowledge of the secret.
This allows us to deal with the security of the protocol separately for the adver-
sarial programs and for human adversaries. It will be interesting to investigate
further in search for other possible problems that satisfy this nice feature. The
obvious open question and limitation is to mathematically quantify the hardness
of the problem discussed in this paper. This, however, remains an open problem.

Acknowledgements

We are grateful to Stuart Haber for his comments and the anonymous reviewers
for their suggestions.

References

1. Matsumoto, T., Imai, H.: Human Identification through Insecure Channel. Ad-
vances in Cryptology - EUROCRYPT 91, Lecture Notes in Computer Science,
Springer-Verlag. 547 (1991) 409–421

2. Wang, C.H., Hwang, T., Tsai, J.J.: On the Matsumoto and Imai’s Human Iden-
tification Scheme. Advances in Cryptology - EUROCRYPT 95, Lecture Notes in
Computer Science, Springer-Verlag. 921 (1995) 382–392

3. Matsumoto, T.: Human-computer cryptography: An attempt. 3rd ACM Conference
on Computer and Communications Security, ACM Press. (1996) 68–75

4. Xiang-Yang Li, Shang-Hua Teng: Practical Human-Machine Identification over In-
secure Channels. Journal of Combinatorial Optimization. 3 (1999) 347–361

5. Hopper, N.J., Blum, M.: Secure Human Identification Protocols. Advances in Cryp-
tology - Asiacrypt 2001, Lecture Notes in Computer Science, Springer-Verlag. 2248
(2001) 52–66

6. Luis von Ahn, Manuel Blum, Nicholas Hopper, John Langford: CAPTCHA: Using
Hard AI Problems for Security. Advances in Cryptology – Eurocrypt 2003, Lecture
Notes in Computer Science, Springer-Verlag. (2003) 294–311

7. Shujun Li, Heung-Yeung Shum: Secure Human-computer identification against
Peeping Attacks (SecHCI): A Survey. Unpublished report, available at Elsevier’s
Computer Science Preprint Server. (2002)

8. Rachna Dhamija, Adrian Perrig: Deja Vu: A user study using images for authen-
tication. Proc. of the 9th USENIX Security Symposium. (2000) 45–58

9. ID Arts Inc: Passfaces - the Art of Identification. Visit http://www.idarts.com
10. Vince Sorensen: PassPic - Visual Password Management. Visit http://

www.authord.com/
11. The CAPTCHA project: ESP-PIX. Visit http://www.captcha.net/
12. Daphna Weinshall: Cognitive Authentication Schemes Safe Against Spyware (Short

Paper). 2006 IEEE Symposium on Security and Privacy. (2006) 295–300
13. Philippe Golle and David Wagner: Cryptanalysis of a Cognitive Authentication

Scheme. Cryptology ePrint Archive, Report 2006/258. http://eprint.iacr.org/.

http://www.authord.com/
http://www.authord.com/

80 H. Jameel et al.

A Security Analysis

A.1 Security Against Passive Adversarial Programs

We first define the following oracles that represent the different functionalities
in our protocol.

The oracle Fk. For any k ∈ Keys(F), this oracle takes as input an s ∈ S and
outputs Fk (s) ∈ {0, 1}.

We assume a global set S− initially empty, available to the following oracles.

The oracle C. This oracle takes as input the following queries:

– Init : This query initializes a new session and terminates any previous session.
C randomly outputs the sequence of instances s = s1s2 . . . sL from S − S−

and updates S− ← S− ∪ s, j ← 1.
– C (a1a2 . . . aL) : If j = ⊥ outputs reject. Else if j = m outputs accept or

reject and updates j ← ⊥. Else if j < m, yields one of two possible outputs:
• (s) ; Randomly outputs the sequence s = s1s2 . . . sL from S − S− and

updates S− ← S− ∪ s, j ← j + 1.
• (reject) ; Outputs (reject) and sets j ← ⊥.

The oracle H. Takes as input the query H (s = s1s2 . . . sL). If S− ∩ s = ϕ,
outputs a1a2 . . . al. Else outputs ⊥.

Now suppose an AI problem solver outputs a sequence of bits r1r2 . . . rt on the
inputs s1s2 . . . st. An adversarial program A wants to guess Fk (st+1) on being
given the challenge st+1. The following experiment describes this functionality:

ExperimentExpaps
F,A

k
R← Keys(F)

s ← AFk

b ← AFk (s)
If b = Fk (s) return 1 else return 0

The aps-advantage of A is defined as:

Advaps
F,A = Pr

[
Expaps

F,A = 1
]

For any t, q we define the aps-advantage of F as:

Advaps
F,A (t, q) = max

A

{
Advaps

F,A
}

with the maximum being over all adversarial programs A having time-complexity
t and making at most q oracle queries to the oracle Fk.

Human Identification Through Image Evaluation Using Secret Predicates 81

Conjecture. If F is a family of (δ, τ)-hard AI problem solvers, then for any
program A:

Advaps
F,A (τ, |S| − 1) < δ.

where δ > 1/2.
Our belief on this conjecture is based on the definition of a CAPTCHA[6].

Even if we provide answers to the queries of an adversarial program, it will be
hard for it to analyze all the pictures and categorize them into one category. The
function family Q described in Section 6 shows just this.

Now let B be a passive adversarial program, such that:

Pr [(B (T q (H (z) , C (z))) , C (z)) = accept] > β.

This adversary can be described by the following experiment:

ExperimentExpaut
F,B

Initialize oracles C and H
While state = “test”

done ← BC,H

B queries C until C outputs accept or reject.
If C outputs accept

Output ‘1’
Else

Output ‘0’

We define the advantage of B as:

Advaut
F,B = Pr

[
Expaut

F,B = 1
]

And aut-advantage of our protocol as:

Advaut
F,B (t, qC , qH) = max

B
{
Advaut

F,B
}

Now, we relate the two adversaries with the help of the following claim:

Claim. We have:

2Advaps
F,A (tp + tsqC + taqH + τ, (qC + qH) l) − 1 = Advaut

F,B (τ, qC , qH)

Proof. We construct an adversary AB which is given an oracle Fk and runs
adversary B as a subroutine. This adversary uses the advantage of B in defeating
our protocol to predict the image of Fk at s.

The adversary is described as follows:

Adversary AFk

B
Randomly select P = Perm (L, l). Run Adversary B, replying to its oracle
queries as follows:
When B makes an oracle query init:

82 H. Jameel et al.

Set j ← 1 and randomly select s = s1s2 · · · sL, where si ∈ S − S− and
update S− ← S− ∪ {si}. Update the sequence p ← sp1sp2 . . . spl

.
When B makes an oracle query C (r′ = a1a2 . . . aL), do:

If j = ⊥ output reject.
Else if j = m and Sep (P, r′) = F (sp1)F (sp2) . . . F (spl

) output accept
and update j ← ⊥; else reject and update j ← ⊥.
Else if j < m, yields one of two possible outputs:

(s) ; If Sep (P, r′) = F (sp1)F (sp2) . . . F (spl
), randomly output the

sequence s = s1s2 . . . sL from S − S− and update S− ← S− ∪ s, j ←
j + 1 and p ← sp1sp2 . . . spl

.
(“reject”) ; If Sep (Perm, r′) 	= F (sp1)F (sp2) . . . F (spl

) output “rej-
ect” and set j ← ⊥.

When B makes an H (s = s1s2 . . . sL) query do:
For i = 1 to l, ai ← Fk (spi)
Return r′ = Insert (P, a1a2 . . . al) to B as the answer.

Until B outputs the state ‘done’.
Set j ← 0.
On B’s init query, randomly select s = s1s2 · · · sL, where si ∈ S − S− and
update S− ← S− ∪ {si}, j ← 1. Update the sequence p ← sp1sp2 . . . spl

.
For 2 to m do:

When B outputs r′ = a1a2 . . . aL set q ← q||Sep (P, r′). Randomly
select s = s1s2 · · · sL, where si ∈ S − S− and update S− ← S− ∪ {si},
j ← j + 1. Update the sequence p ← p||sp1sp2 . . . spl

.
When B outputs a1a2 . . . aL, set q ← q||Sep (P, r′) and output accept.

Randomly select an s from p = s1s2 . . . slm and set it as the output.
Output the corresponding bit in q = a1a2 . . . alm as the response and halt.

Now, we can see that:

Advaps
F,AB

= Pr
r∈Fk

[
s ← AFk

B ; b ← AFk

B (s) ; Fk (s) = b
]

= Pr [Fk (s) = b|B succeeds]Pr [B succeeds]
+ Pr [Fk (s) 	= b| B fails] Pr [B fails]

=
Advaut

F,B
2

+
1
2

Let tp, ts and ta denote the running times of the procedures Perm (., .), Sep (., .)
and Insert (., .) respectively. AB has to perform Perm (., .) once, Sep (., .) a maxi-
mum of tsqC times and Insert (., .) a maximum of taqH times. Further notice that
apart from these calculations, the adversary AB does some rather trivial calcu-
lations more than the adversary B. Thus if the running time of B is bounded
by τ , then that of AB is bounded above by tp + tsqC + taqH + τ . Hence, by
maximizing, we reach to the conclusion:

2Advaps
F,A (tp + tsqC + taqH + τ, (qC + qH) l) − 1 = Advaut

F,B (τ, qC , qH)

��

Human Identification Through Image Evaluation Using Secret Predicates 83

Theorem. If F is a (δ, τ)-hard family of AI problem solvers, then for all passive
adversarial programs B running in time less than τ − Δt:

Pr [(B (T q (H (z) , C (z))) , C (z)) = accept] < 2δ − 1

where, q ≈ |S|−1
Lm and Δt ≈

(
1 + |S|−1

l

)
t, with t � τ .

A.2 Security Against Passive Human Adversaries

Assume that we have a human adversary H. We consider the following experi-
ment:

ExperimentExphg
F,H

k
R← Keys(F);

b1b2 . . . bk ← {0, 1}k;
s1s2 . . . sr ← S − S−, such thatF (s1)F (s2) . . . F (sr) = b1b2 . . . bk;
k′ ← H (s1s2 . . . sr);
If k = k′ return 1 else return 0.

The hg-advantage of H is defined as:

Advhg
F,H = Pr

r∈Fk

[
Exphg

F,A = 1
]

For any t we define the hg-advantage of F as:

Advhg
F,H (t) = max

H

{
Advhg

F,H
}

Since F is an (λ (r) , τ)-resilient function family, we have

Advhg
F,H (τ) = λ (r) .

This tells us that if a human adversary is given a series of instances, and is
not shown which one of them output 1 or which one of them output zero, then
he has a probability of λ (r) in successfully guessing the key. All we to show is
that for a human observer, the following two situations are hard to distinguish
but with a small probability: (a) Concatenated outputs of the two oracles in
our protocol for a total of r/Lm authentication sessions. (b) A random set of r
instances with a truly random answer bit string of the same length. In particu-
lar, consider a passive adversary H, who listens r/Lm sessions of our protocol
and gets the r instances s1s2 . . . sr together with their answers a1a2 . . . ar. Let
Ai denote the event that F (si) = ai in our protocol. We first prove the following:

Theorem. 1
2r < Pr [A1 ∧ A2 ∧ . . . ∧ Ar] < 1

2r

(
1 + l

L2

)r
, where r = jL for some

positive integer j.

84 H. Jameel et al.

Proof. Consider the event, A1 : F (s1) = a1. Let σ denote the identity permuta-
tion and P denote the hidden permutation of our protocol, then,

Pr [F (s1) = a1] = Pr [F (s1) = a1|σ (1) = P (1)] Pr [σ (1) = P (1)] +
+ Pr [F (s1) = a1|σ (1) 	= P (1)] Pr [σ (1) 	= P (1)]

= 1 · 1
L

(
l

L

)
+

1
2

(
1 − l

L2

)
=

1
2

(
1 +

l

L2

)

Similarly, we can find out that:

Pr [F (s2) = a2|F (s1) = a1] <
1
2

(
1 +

l

L2

)

And in general, for all t ≤ r,

1
2

< Pr [F (st) = at|F (s1) = a1 ∧ . . . ∧ F (st−1) = at−1] <
1
2

(
1 +

l

L2

)

Hence, 1
2r < Pr [A1 ∧ A2 ∧ . . . ∧ Ar] < 1

2r

(
1 + l

L2

)r
. ��

We define the advantage of a passive human adversary attempting to defeat our
protocol as Advhg

P,H (τ) and assume that, Advhg
P,H (τ) = Advhg

F,H (τ) + α (r);
where, α (r) = M ,(M < 1 − λ (r)) when Pr [A1 ∧ A2 ∧ . . . ∧ Ar] = 1, and α (r) =
0 when, Pr [A1 ∧ A2 ∧ . . . ∧ Ar] = 1/2r. Assuming α (r), to be a linear function,
it is straight forward to show that:

Advhg
P,H (τ) < λ (r) +

M

2r − 1

((
1 +

l

L2

)r

− 1
)

.

	Introduction
	An Informal Description of the Protocol
	Definitions
	Proposed Protocol
	Security Analysis
	Security Against Passive Adversarial Programs
	Security Against Passive Human Adversaries
	Security Against Active Adversaries

	A Suitable Instantiation of F
	A User Friendly Implementation

	Limitations and Discussion
	Conclusion
	Security Analysis
	Security Against Passive Adversarial Programs
	Security Against Passive Human Adversaries

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

