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Abstract- Perception of a ubiquitous system is based solely
upon sensor and device readings. The system decides to provide
adequate services based upon these readings. We define a system
of fault detection in the perception mechanism of a ubiquitous
system based upon Bayesian Networks and the combination of
beliefs from independent networks. The proposed scheme is
distributed and adequately suits the functioning of a large
multi-domain ubiquitous system. Eradicating faulty percepts
and identifying the malfunctioning device would improve the
quality of service, and make the system more reliable.
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1. Introduction

Advances in embedded technology and computing power
have made the vision ofubiquitous computing [6] a reality. As
the devices become much smaller and powerful, the desired
user ubiquity can be achieved. Taking the dream of ubiquitous
computing to another level we see the development of
context-aware ubiquitous systems. Systems which take into
account a great amount of information before interacting with
the environment, and dynamically cater to user needs based on
the situation at hand.

Achieving context-awareness is not an easy task; the system
must decide which information to model as context and which
information to discard. The system has to maintain intense
interaction with the environment to gather this information. At
the same time the system should possess a very strong
perception mechanism consisting of a number of versatile
devices. The task of such perceiving devices becomes more
complicated as they have to be deployed in a real environment
which is very dynamic and from the system's point of view is
partially observable.

Recent research has been aimed at making such
context-aware ubiquitous systems more autonomous [11].
Autonomy on the part ofthe system requires it to continuously
monitor all its resources and implement policies which can
deal with situations of faults and failures. In order to be
completely autonomic the system should incorporate the
essential four features; self-optimization, self-healing,
self-protection, and self-reconfiguration [11] [12]. Self-healing
and self-reconfiguration require that the system's perception
mechanism should have a reliable fault-detection mechanism

so that in case of any fault or failure in any device, its behavior
does not deteriorate and there is no loss of information.

The perception mechanism of a context-aware ubiquitous
system is made up of a number of disparate devices and
sensors. It is through the state of these components the system
assesses the current situation and decides upon the best service
to provide. Moreover this information also forms the context
which is used by the system for better situation assessment. If
any of these devices or sensors develops a fault and provides
faulty data to the system, the overall system performance
would deteriorate.

This work is aimed at providing a mechanism which can
exploit the prior domain knowledge a context-aware
ubiquitous system has, in order to devise a fault detection
method for its perception mechanism. In the next section we
provide the related work and the third section briefly explains
the working of a ubiquitous system's perception mechanism,
and context formation. It also explains the effect of a faulty
percept on the context formed and system behavior. Finally in
the fourth section we present the proposed scheme and some
simulation results.

2. Related Work

Fault detection and diagnosis in sensors and sensor networks
has been the focus of much research in current years. Some
well-established models for fault tolerance in sensors include
the celebrated Marzullo model [3] and Iyengar's model [3].
These models have proven very useful in large and distributed
sensor networks.

Online fault-detection of sensor measurements has also
been done using function minimization and non-parametric
techniques [4]. The approach uses function minimization and
application of non-parametric statistical methods to weed out
the most probable faulty sensors in a sensor network.
Optimization is achieved by using Powell non-linear function
minimization method. Whereas the above mentioned
techniques have been applied successfully for fault tolerance
and fault-detection in distributed sensor-networks, they do not
involve much prior domain knowledge apart from that of the
sensors. In a context-aware ubiquitous environment the prior
domain knowledge is useful in predicting sensor behavior and
modeling complex scenarios which can constrain the behavior
of sensors and actuators. This additional knowledge needs to
be incorporated for more reliable fault-detection techniques.
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Sensor and actuator fault-detection in large dynamic
systems has also been done using stochastic automaton [4].
The addressed systems include those which have discrete
valued inputs and outputs. The approach is based on the
generalized observer scheme and extends it to deal with
discrete valued variables.

Sensor fault detection and identification for chemical
processes using Bayesian Belief Networks has been explored
thoroughly in [17]. The model applied is similar to the one
presented here. It achieves fault detection through simple
evidential reasoning and the identification is done through an
analysis of the most probable state of the sensor over a long
period of time. The main difference between this work and our
work is the fact that we are trying to identify the faults in
sensors and devices which form the complete perception
mechanism of a ubiquitous system, whereas the work
mentioned deals only with sensor faults.

Bayesian Networks have been used in fault detection and
diagnosis of dynamic systems [5]. The work has been focused
on domains related to the control and supervision of large
industrial processes involving mixtures of continuous and
discrete variables. The main technique in this work includes
hybrid dynamic Bayesian networks which capture the
stochastic nature of the process and accommodate all types of
system variables both discrete and continuous. The application
of learning Bayesian networks from system data has also been
used for fault detection in large dynamic systems. This method
explores the learning capability of Bayesian networks from
measurements of the relevant signals that are present in the
dynamic system by the use of a learning algorithm [7]. As
opposed to our technique these techniques capture the
temporal relations of various process components. Such
temporal knowledge is not so critical for the context-aware
ubiquitous system to be used efficiently for fault-detection.

Bayesian networks have been successfully used in anomaly
detection. Naive Bayesian networks have been employed for
detecting anomalies in active networks for providing intrusion
detection services [2]. Similarly Bayesian networks have also
been used for developing self-aware services which use
Bayesian networks to detect any anomaly in their behavior
while functioning on the internet [ 1 ].
A complete classification of the various types of faults in a

ubiquitous system is given in [13]. It goes on to propose an
architecture for a fault-manager inside a ubiquitous system.
The main focus of the work is on fault-tolerance in large and
context-aware ubiquitous systems, dealing with application
and device failures. Our proposed scheme deals specifically
with the perception mechanism of a context-aware ubiquitous
system and addresses in detail the faults which can occur in the
hardware components such as the disparate sensors and
actuators.

3. Context-Aware Ubiquitous Systems

Ubiquitous systems have been designed to facilitate the
interaction of humans with computers so that instead of being
distinct objects in a user's environment, computers become a
part of it by embedding the computations into the environment.

In order to achieve this goal the system would have to
maintain a very intense interaction with its environment [10].
It needs prior knowledge about the domain, the user and the
devices with which it interacts.

3.1 Perception Mechanism of a Ubiquitous System

In a context-aware ubiquitous system the entire
perception mechanism of a system is composed of a number of
diverse sensors deployed in the environment to monitor
various physical quantities. A number of controllers or
actuators are used by the system to respond to various changes
which take place in the environment. The detection of such
changes and the formation of context based on these changes
is dependent on the data sensed from the monitored
environment [10].

In any particular scenario the steps taken by the system can
be defined as sensing some data from the environment and
acting on its basis. The action taken in the light of the sensed
data is determined through various factors such as available
resources, the contextual contents, and user preferences. Every
such decision step taken by the system also involves sensing
data which is needed for validating if the action has indeed
succeeded. The complete interaction cycle in a scenario is
shown in Figure 1; taken from [14].

Sensing Data
(determining events, changes in system possibly caused by external factors)

Actions
(determined through the nature of the system, context and the sensed data)

Action Validation
(validation of the action(s) taken, in the current domain of interest)

Figure 1. The complete interaction cycle of a context-aware ubiquitous
system.

3.2 Context Formation

In large context-aware ubiquitous systems, the formation
of context plays the most important role in their functionality.
Context formation is done, using some prior domain-specific
knowledge and the sensed data [10]. Prior domain knowledge
can be represented using any feasible knowledge
representation technique such as ontology etc [10]. Context is
formed by fusing together sensed data and this prior domain
knowledge. Sensed data plays the most important part in
context formation. The current context is responsible for
determining system decisions such as the type of service to be
provided to the user and ifthrough any sequence of events the
sources of sensory data get corrupted the context formed
would be incorrect. As the contextual knowledge plays the
central role in the interaction cycle of a ubiquitous system,
incorrect contextual information would result in erroneous
system behavior.
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4. Fault Detection using Bayesian Networks

A pervasive environment defines constraints on the
behavior of devices and sensors with changing situations.
These constraints can be used to model a single
interaction-cycle of the system; accommodating all the
participating devices and sensors. This model can then be used
for detecting any fault in the system and identifying the faulty
device or sensor.

Deducing the state of a single component from a single
interaction-cycle would seem inappropriate because the device
or sensor in question could be a part of another
interaction-cycle where it interacts with a different set of
devices. Considering the role of each device in an
interaction-cycle different from its role in another
interaction-cycle creates a sensor or device role replication.
Thus, in order to exploit all the relevant evidences that we can
get about a single device, we need to define a mechanism
which can take this role replication into account and identify a
faulty component with more confidence. In order to achieve
this goal, we can define a single Bayesian Network [8] [9]
which can absorb all the devices and their interactions.
Maintaining a single Bayesian Network of this magnitude
would be computationally infeasible. Most of the algorithms
for exact inference in Bayesian Networks are exponential with
the tree width [15], detecting and identifying faults would
consume much system resources and time.

Separate Bayesian Networks can be used to model all the
interaction cycles as mutually independent Networks, having
some nodes in common.

4.1 Sensor and Actuator Models

We use the sensor and actuator models as described in [14].
For future use the models are described in figure 2.
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Figure 2. A Bayesian network representing a sensor (SS: Sensor State,
QE: Physical Quantity/Event, SV: Actual Sensor Reading) on the left and
a Bayesian network representing an actuator (AS: Actuator State, QE:

Physical Quantity/Event, AV: Actuator Reading, MQ: controlled
quantity) on the right.

According to the chain rule for Bayesian networks the joint
probability distribution for the sensor model is given by the
equation:

P(SS, QE, SV) = P(SV SS, QE) x P(SS) x P(QE)...(1)
and for the actuator model it is given as:

P(AS,QE,A V,MQ) = P(MQI A V) xP(A V AS,QE) xP(AS) xP(QE)...(2)

Each scenario can be described through a single Bayesian
Network, by connecting the sensor and actuators which
participate in it, as shown in figure 3.

Sensor (pre-coanditio)

(QE, S

Figure 3. A complete scenario specified according to the selected
models, for single sensors at the pre-condition and post-condition levels

and a single actuator at the action level.

Thus in the representation of a scenario we find
pseudo-causal relations among the participating devices.
These relations impose constraints on their behavior, and any
deviation from this would lead to an anomaly, which could be
identified. The anomaly makes itself visible through the state
variable of the participating devices. This inference is local to
the scenario, inferences from other scenarios which contain
the device should also be taken into account for the formation
of a more reliable global belief.

Representing every scenario as an independent Bayesian
Network, would distribute the number of devices present in
the system among several networks. In case one ofthe devices
has been recognized as being faulty it is needed that the beliefs
currently assigned to this variable in other networks should
also be taken into account. Thus we need a mechanism to
combine probability estimates from separate sources.
We propose to use a scheme of combining probabilities

from different sources based upon the amount of information
they have. The combination is done using (3) which has been
taken from [16].

n
p*= Zpi .(3)

i=l

Where 'i' indicates the number of scenarios considered for
forming the belief, 'A' is the amount of information each
scenario has and 'p *' denotes the global probability about the
state of the device. 'f' is estimated using equation (4).

Devices in Scenario i (4)
E Devices in each scenario

Thus, a scenario which involves more devices would have
more contribution in the overall belief formation, as it has
more information about the system as compared to others.

5. Results

In the experiment which were simulated we considered
three scenarios having one device in common. In order to
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show the effectiveness of the technique we show the belief
from each scenario and the overall combined belief.

1) "Whenever the user enters his bedroom, the inside
temperature is adjusted according to the temperature outside
the room. The user has defined his preferences "

2) "Within the bedroom the user has also given his
preferences for setting the humidity level according to the
current temperature of the room"

3) "The bedroom contains an area which the user uses as his
study, and its tem-perature is also to be kept according to the
temperature of the room, it has a separate actuator for
adjusting the temperature, and the user has specified his
preferences for this task."

The devices used in the described scenarios are:

Internal Temperature Sensor
Room Air Conditioner
Movement Detector
External Temperature Sensor
Humidifier
Humidity Sensor
Study Air Conditioner

Study Temperature Sensor

and the corresponding Bayesian Networks are depicted in
figures 4 and 5

Device Scena
Internal Temperature 16-2
Sensor
Room Air Conditioner 11-1
Movement Detector Yes

External Temperature 31-4
Sensor
Humidifier
Humidity Sensor
Study Air Conditioner
Study Temperature
Sensor
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Figure 4. Bayesian Network for the first scenario.

It is impossible to list all the probability distributions here,
for the sake of simplicity we provide the probability
distribution of the movement-sensor from the first scenario.
This is listed in Table- i.

For the test run consider that the internal temperature sensor

is faulty. As it is present in all the three scenarios we need to
evaluate each scenario independently and then combine the
belief of the possibly faulty devices. The evidences entered
into the system are listed in Table-2.

Table 1. Conditional Probability distribution for the movement detector
from scenario 1 P(MD_read State MD, Movement)

MD-read
State-MD Movement Yes No

Yes 1.0 0.0
Correct

No 0.0 1.0

Yes 0.65 0.35
Incorrect 0.35 0.65

Figure 5. Bayesian Networks for scenario2 and scenario3.

The resulting state-probability for the devices are shown in
Table-3.

Table 3. Resulting probability for the devices from each scenario.
P(Device=Incorrect)

Device Scenariol Scenario2 Scenario3
Internal Temperature 0.8146 0.6663 0.7656

Sensor
Room Air Conditioner 0.0508
Movement Detector 0.2871
External Temperature 0.1

Sensor
Humidifier 0.4891
Humidity Sensor 0.2683
Study Air Conditioner 0.2872
Study Temperature 0.0488

Sensor

The combined belief for the internal sensor and the
humidifier are calculated according to (3), and
P(statemint-temp_sensor=Incorrect)=0.7554 and
P(state humidifier=Incorrect)=0. 1467. Thus it is clear that the
internal temperature sensor of the room is faulty and its
readings should be corrected or discarded.

5. Conclusion and Future Work

We have proposed a scheme for fault detection using
Bayesian Networks and the combination of beliefs from
independent sources. The technique utilizes the prior
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knowledge that the system possesses such as user-preferences
and device and sensor descriptions. Bayesian Networks are
created for each possible interaction cycle with the assumption
that even with overlapping nodes the networks are mutually
independent and the device replication in these scenarios is
used to forn a global belief about the state of the device or
sensor. The proposed scheme not only helps in filtering out
faulty percepts but it forns a vital component needed for
making the system more autonomic, specially in the case of
self-healing and self-optimization [11].
As our future work we would like to validate the theoretical

aspects associated with our main assumption about the mutual
independence of Bayesian Networks which have some nodes
in common.
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