
A Data Model for EPC Information Services

Tuyen Nguyen, Young-Koo Lee, Rezwanul Huq, Byeong-Soo Jeong, Sungyoung Lee

Department of Computer Engineering, KyungHee University, Korea

{ntttuyen, rhuq}@oslab.khu.ac.kr, {yklee, jeong}@khu.ac.kr, sylee@oslab.khu.ac.kr

Abstract

The RFID system with the capability for unique item-
level tracking promises a tremendous change in the automa-
tion process of identifying, managing and tracking com-
modities along supply chains. One of the heaviest burdens
in the RFID system is laid on its repository that has to han-
dle an enormous amount of timestamped RFID data that are
generated continuously from many complex relationships.
This motivates us to propose an event-based data model for
EPC Information Service (EPCIS) repository that reduces
the data volume and handles well all kinds of entity relation-
ships. We also exploit both object-relational and relational
strength to make data rich in semantics and build a gener-
alization hierarchy of events to answer successfully queries
about historical events recommended by EPCGlobal’s EP-
CIS specification.

1 Introduction

With the great ability of identifying each object by a
unique Electronic Product Code(EPC), RFID technology
has enormous potentiality that can make significant changes
in many areas such as supply chain automation, asset track-
ing, medical applications and warehouse. Despite of this di-
versity, all RFID applications share one of the biggest chal-
lenges that we have to fully consider in the effort to make
RFID a reality: how to build a strong repository that can
maintain enormous incoming stream data logically and effi-
ciently allowing partners’ applications to query data easily
with no need to concern themselves in the internal tech-
nologies. Different from ordinary applications’ reposito-
ries, this repository has to handle both static data describ-
ing objects and different aspects of business processes, and
temporal data coming from each individual EPC-tagged ob-
ject’s lifecycle throughout the business processes it involves
in. (In this paper, we use the terms RFID and EPC tag inter-
changeably.) To leverage EPC data sharing between dis-
parate applications using different database technologies,
EPCGlobal[1], an organization that develops world-wide
standards for RFID technology, proposed the EPC Informa-
tion Service (EPCIS)[2], a data repository that covers most
issues related to RFID data management and uniform pro-

gramming interfaces for data acquisition and sharing. Our
work focuses on building a repository that meets the re-
quirements in this specification.

Static data are similar to traditional regular business data
and easy to handle by relational databases. However, in a
large system like RFID network, we should think about a
general meta-data model with high formality so that differ-
ent applications can easily query any entity in the same way.
Temporal data actually describe the dynamic relationships
between EPC objects and other static entities. The amount
of data clearly increases over time and easily overloads our
repository. Moreover, in some cases, we also have to main-
tain the implied relationship between the objects experienc-
ing the same business process. For example, when some
milk boxes are moved from a warehouse to a shipping house
and then packed into a container for shipping, their relation-
ships with entities location and business step change, new
relationships between these boxes and that container begin
and there also exists an implied relationship between these
boxes indicating that from this time, they are always at the
same locations and conditions. Obviously, when a change
occurs in an EPC object life, it can include many changes in
the relationships of that object with other entities. In other
words, the change itself, which is described as an event in
the EPCIS specification[2], contains much semantic infor-
mation that the data model should well represent. The EP-
CIS data model have to consider all of these problems.

There are several products and projects that build their
own RFID architectures in which there is a part operating
similar to EPCIS, such as Sun RFID Software[3], Siemens
RFID middleware[4], etc. Their data models are efficient
for separate EPC management and some queries on track-
ing and monitoring commodities. However, these systems
have not fully considered the EPCIS specification that is
really helpful for different components developed by dif-
ferent organizations to easily integrate with each other. In
addition, since in their relational repositories, one event or
entity in the real world is dispersed in several tables makes
these models weak in semantics and difficult for us look-
ing back on history of events pushed up from underlying
component.

Based on the EPCGlobal’s specification, our paper just
focuses on one important component in RFID system, the



Figure 1. EPCIS sits at the top of EPCGlobal architec-
ture framework, serving as a data bridge between the RFID
physical world and high-level applications

EPCIS repository. We built an event-based repository that
satisfies the requirements specified above. Our data model
is different from others in storing RFID data in form of
meaningful timestamped events and exploiting the strength
of object-oriented concepts while still keeping all promi-
nent features of traditional relational approaches. We built
the event generalization hierarchy so that it is simple to spe-
cialize more events and easy to look back on the event his-
tory. All EPCs experiencing the same business context at
the same time are in the same event so that we can reduce
the data volume and also preserve the association between
EPCs implied their appearing in the same event.

As a result, our repository is efficient when objects are
moving together in large groups. With the event-based
approach, we can answer successfully the two predefined
queries recommended in EPCIS Specification[2]: Sim-
pleEventQuery on the event history and SimpleMasterData-
Query on static entities. One example of SimpleEventQuery
is ”find all events that occurred at location L1 or L2 from
time T1 to T2”. The difficulty of this kind of queries is the
ability of retrieving all events along the event generalization
hierarchy and recovering the all semantic information the
events had when they were sent to EPCIS. This difficulty is
easily solved by our data model but previous models.

This paper is organized as follows. Section 2 introduces
the EPC system architecture, EPCIS, its specification and
previous work related to EPCIS repository. Section 3 pro-
poses an extended ER diagram for the repository. Section 4
applies object-relational concepts on the model while keep-
ing relational best features. Section 5 answers two prede-
fined queries. Section 6 reports the experiments and future
work. Section 7 overviews some related works. Section 8
concludes our paper.

2 EPC Information Services (EPCIS)

Before proposing our Extended ER diagram, we
overview the EPC system architecture [1], the position of
EPCIS and the purpose of EPCIS specification in our effort
to build an EPC Network.

2.1 EPC General Architecture

Figure 1 shows a common architecture illustrating how
an RFID application works. Each object is tagged with an
RFID chip that contains a unique Electronic Product Code
(EPC). Data from these tags are then collected periodically
by RFID readers and sent to RFID Middleware in form of
tuple <epc, location, time>. Instead of storing these mas-
sive, uncleaned, poor-semantic reads directly in repository,
the RFID Middleware will filter (e.g., eliminate duplicate
reads and missing reads) and correlate them with the busi-
ness context to generate all clean and meaningful events.
These events are then passed to EPCIS through Capture In-
terface and stored permanently in its repository or pushed to
some applications interested in real-time information. The
data can be queried from partners’ accessing applications
through Query Interface.

2.2 What is EPCIS?

In the EPC architecture, EPCIS is the primary bridge
connecting RFID physical world with the high level appli-
cations and facilitating the data exchange between trading
partners. It consists of an EPC-enabled repository for stor-
ing data persistently and two standard interfaces: EPC Cap-
turing Interface that gets EPC events from underlying ap-
plications and EPC Query Interface that allows authorized
enterprises to retrieve data in repository.

Data in EPC repository fall into two categories which
will be described more detailed in section 3.1

• Timestamped event data collected throughout the life-
cycle of EPC-tagged objects while business processes
are carried out

• Master data providing necessary context information
for interpreting event data and rarely changed over
time.

The repository has all rights to decide how to store mas-
ter and event data as long as it preserves all semantic in-
formation and supports Query interface to answer various
queries from clients including queries on the event history.

2.3 EPCIS Specification

Despite the diversity of RFID applications, the EPCIS
functionalities are almost similar. Therefore, EPCglobal in-



troduces the EPCIS Specification that provides a uniform
programmatic interface (not an implementation) to allow
various clients to capture and access EPC-related data and
the business transactions with which data are associated.
This specification specifies generic structures for represent-
ing EPCIS data; what data is exchanged through EPCIS,
what its abstract structure is, what it means and its bind-
ing to a XML Schema; and service operations through
which EPCIS clients interact. Actually, EPCIS Specifica-
tion just provides a standard data sharing interface to facil-
itate the communication between different applications that
deal with EPC-related data. How these standards should be
implemented as well as how to model the data in EPCIS are
up to each organization.

2.4 Previous EPCIS Data Models

This section summarizes some data models that were
proposed before. We can not but mention one of the earli-
est ones from Mark Harrison[5] that summarizes EPC data
into two categories: static attribute data and timestamped
historical data. The timestamped data includes observation,
transaction, containment, and measurement. Each type is
represented in a three-dimensional space which has a times-
tamped axis and other two axes representing two entities
joining that dynamic relation. Collected temporal data are
viewed as points in the corresponding 3D spaces. The sim-
ple temporal query in the space is the process of looking
for appropriate plane, line, or point. The complex temporal
query is decomposed into numerous simple queries whose
results are joined and filtered later. Clearly, this model is not
efficient enough for complex queries and queries related to
business context because obviously, three dimensions are
just enough for describing the minimum information about
a dynamic relationship.

Fusheng Wang et al. proposed a data model for Siemens
RFID Middleware[4]. This model includes four primary
static entities: objects, sensors/readers, locations, and
transactions. They interact with each other to generate
state changes (location change, containment change) and
event changes (observations and transaction items). These
changes are modeled as dynamic binary relationships which
associate with timestamps (event changes) or time intervals
[tstart, tend] (state changes). This data model highlights
the state history and temporal semantics of business pro-
cesses. However, we lose the completeness of EPC data be-
cause intermediate observations are eliminated in the state
history. Therefore, it is hard to answer such queries as “the
last time object 123 was seen at location L” and the Sim-
pleEventQuery recommended by the EPCIS Specification.
Moreover, it takes time to process events from underlying
middleware and store them in the appropriate tuples. Fi-
nally, the four primary entities above are not enough for

describing business processes.
Sun RFID software[3] models each static entity type in

three different tables: the first for the entity type itself in-
cluding identifier and the attributes that all entities share in
common, the second for specific attributes intended for each
entity, the third for parent/child relationships. Dynamic data
are stored in form of different logs: container log, observa-
tion log , transaction log, tag allocation log (history of all
tags allocated). Each log entry has a timestamp. Sun pro-
vides us a useful meta schema for static entity. It preserves
the completeness of RFID data history. However, like other
models, it is weak in business process semantics because it
does not include different aspects of a business process but
location and shipping.

In general, three models mentioned above track EPC-
tagged objects separately. Next section, we propose our
own data model for both static and dynamic data that cov-
ers most requirements specified by the EPCIS Specification.
Our model is event-based and rich in semantics and rep-
resents all kind of relationships. Objects that experience
the same process will be tracked together so that we can
reduce the data volume and keep the internal relations be-
tween them.

3 Extended Entity Relationship (EER) Dia-
gram

3.1 Data in EPCIS

As mentioned, data in EPCIS fall into two categories:
master data (static data) and event data (dynamic data).
Master data include (1) class-level Data describing prop-
erties for all objects of the same object class (product name,
manufacturer, SKU, etc), (2) instance-level Data describing
properties of each individual object (date of manufacture,
lot number, etc), and (3) business context data providing
necessary business context (business locations, transaction
type, etc).

Event data refer to things that happen at a specific time.
There are four kinds of events:

• Object Event which carries information about actual
observations of or assertions about EPC-tagged objects
(e.g., “EPC X was shipped from store Y at time Z”).

• Aggregation Event which announces a specific group
of EPC-tagged objects was contained in another one
(e.g., “at time T, objects of EPCs A, B, C was aggre-
gated to the case EPC X at factory L”).

• Quantity Event which inventorially reports the number
of instances of a specific object class (e.g., “at time T,
there are 400 instances of object class X observed at
location L”).



Figure 2. ER diagram for Vocabulary Business Location

• Transaction Event which describes the association of
EPC-tagged objects with one or more business trans-
actions (e.g., “at time T, the cases of EPC X, Y, Z were
shipped for purchase order #123”.

3.2 Characteristics of Master Data

Master data consist of a collection of vocabularies. Each
vocabulary contains a list of elements, each of which has
its own attribute set. For example, to represent information
about all the products, we list each product as an element in
vocabulary Products. But these products may not share the
same set of attributes beacause attributes for product Razor
are different from those for Shirt.

According to the particularity of business, each enter-
prise builds up its own set of vocabularies. However, some
important ones needed for interpreting business processes
are:

• Object, Product, Organization – instant-level and
class-level information about EPC-tagged objects

• Container – different types of containers into which
objects can be packed (case, pallet, truck, etc.)

• Readpoint – places where EPCIS events took place.

• Business Location – business locations where objects
are assumed to be following an events.

• BizTransaction, BizTransactionType – information
about transactions and their types.

• BizStep – steps in business process (shipping, receiv-
ing, etc.)

• Disposition – business state of EPC objects (available
for sale, sold, etc.)

Elements in the same vocabulary can have hierarchical
relationship with each other with an arbitrary number of
levels of depth. For example, location “Walmart. at Seoul”
can have ”Walmart. at Seoul floor#1” as its child. Besides,
a given child can be a direct child of more than one parents.

Based on these characteristics, we model each vocab-
ulary in the similar way like we do for vocabulary BI-
ZLOCATION (business location) illustrated in Figure 2.
An entity type called BIZLOCATION represents for the
vocabulary. Besides the identifier vocabulary nameID

Figure 3. Relationships between vocabularies

(e.g.bizLocationID) and Name for each entity, this entity
type has a special attribute called attr list, which is a list
of pairs of (attr name, attr value), to maintain the attribute
list associating with each entity. The entity type relates to
itself in a parent/child relationship.

There also exists other relationships among different vo-
cabularies in master data that can be modeled easily as il-
lustrated in Figure 3. For example, each EPC-tagged object
(EPCObject) can be a product item or a container and be-
longs to a container type (e.g. item, case, pallet, truck, etc.).
And associating with each business transaction is its corre-
sponding transaction type.

3.3 Characteristics of Event Data

Every event type carries temporal information in na-
ture. Therefore, first a base event type, EPCISEvent, con-
sists of two base attributes: the timestamp when event oc-
curred, called event time, and the timestamp when event was
recorded in repository, called record time. Other event types
inherit from this root and encapsulate more attributes about
the business context in which they occurred, including:

• the objects or entities observed which are EPCs, EPC-
Class (Quantity Event), list of business transactions
(Transaction Event).

• the location (Readpoint and Business Location)

• the business context (Business Step and Disposition)

Though the EPCIS specification recommends four kinds
of events that provide necessary information about the com-
modity flow in most business processes. However, each en-
terprise may come up with its own events or extensions from
these ones to meet their specific requirements. This general-
ization hierarchy allows us to specialize more events easily
as needed and perform temporal operation on the root while
searching for specific attribute in the specialization events.
Therefore, it answers successfully those queries asking for
the event history (e.g., the SimpleEventDataQuery recom-
mended by the EPCIS specification). The hierarchy of event
types and the relationship between them and other vocabu-
laries are described in detail in Figure 4. To avoid line over-
lap, in this figure, we considered that event types with the
same name are the same entity type.



Figure 4. Extended entity relationship diagram for our pro-
posed data model. Events are temporal and hierarchical and
interpreted by other vocabularies

Figure 5. Proposed object-relational model consisted of two
layers, one based on tables and the other based on views

Figure 6. Vocabulary BizLocation and its tables in relational
layer

4 Object-Relational Model
Relational database has proved itself over years a good

ability of storing large amount of data and protecting in-
tegrity through normalization and constraints. Furthermore,
all sorts of optimizations have been built into engines so that
they are very fast. However, relational database has a lack
of semantic features and an inability to represent complex
structures and operations. Therefore, it is not nearly strong
enough to model all kinds of relationships, both static and
dynamic. Meanwhile, the object-oriented database is good
at semantic data modeling but complex for query process-
ing and unable to support large-scale systems. These rea-
sons have stimulated the emergence of object-relational ap-
proach to benefit aspects from both models. Data are stored
in tables, and we can define our own data structures and
relevant operations for tabular entries, and benefit different
kinds of object-oriented relationships between objects such
as aggregation, association and inheritance.

Unfortunately, current database systems, such as Oracle,
depend heavily on relational tables when building object-
relational features. If we directly use these object-relational
features, the performance of our system is much less effi-
cient than purely relational approach. Therefore, before ap-
plying object-relational approach, we employ a relational



Figure 7. Tables for ObjectEvent in relational layer

layer (Figure 5) in which we map the EER diagram in
previous section into relational tables. Normalization and
all constraints are deployed at this layer as in a traditional
database. Then, we create object views that materialize
events and vocabularies in object-relational approach so that
they carry as much semantics as we expect. Query Interface
can query repository from views in object-relational layer.
Besides, we place instead-of triggers on these views so that
incoming data from capture interface can be inserted into
repository via object-relational layer. And in fact, applica-
tion also can access the data via relational layer directly.

4.1 Relational Layer

We store each vocabulary in a table, in which each com-
mon attribute of all vocabulary elements corresponds with
a table field, and the distinct set of attributes, which is spe-
cific for individual element, in another table (vocabulary-
name EXT) whose field named attr value can accept any
type of value. Similarly, the parent/children relationships
among elements are maintained in the third table (vocabu-
laryname HREF) which consists of two fields as the com-
posite primary key: parent and child. Example in Figure 6,
vocabulary BizLocation in Figure 2 are dispersed in three
tables BizLocation, BizLocation Ext and BizLocation Href.

In EER diagram (Figure 4), we can see that there are a
number of vocabularies to describe each event type. There-
fore, besides a table designed for the event itself, we have
additional tables for one-many or many-many relationships
between that event and other vocabularies. As an example,
Figure 7 demonstrates how to maintain information about
ObjectEvent in tables. ObjectEvent bizTrans is the table for
the the business transaction list one object event can involve
in.

4.2 Object-Relational Layer

Above the well-constrained and normalized relational
layer, we deploy an object-relational layer, which consists

of object views, to materialize rich semantic vocabularies
and events. Because each vocabulary and event can be dis-
persed in some tables in relational layers, first, for each vo-
cabularies and events, we create an corresponding object
type encapsulating all the necessary information from sev-
eral tables that relate to that vocabulary or event. For exam-
ple, the object type for vocabulary BizLocaiton is created as
follows

create type BizLocation_Type as object(
bizLocationID varchar2(50),name varchar2(50),
attr_list attr_list_type,children children_table);

Especially, when we create object types for events, we
also define the inheritance relationships among them. We
begin with EPCISEvent Type representing the root EPCIS
event that just carries the temporal information

create type EPCISEvent_Type as object(
eventTime timestamp with time zone,
recordTime timestamp with time zone)not final;

Other event types inherit EPCIS event type and continue
this inheritance hierarchy as deep as we expect. For exam-
ple:

create type ObjectEvent_Type
under EPCISEvent_Type}(

EPCList EPCList_type,action varchar2(10),
bizStep varchar2(100),disposition varchar2(100),
readpoint varchar2(100),bizLocation varchar2(100),
bizTransactionList bizTransaction_Ref_table) not final;

with EPCList type - a collection or nested tables of string
and bizTransaction Ref table - a nested table of an object
type consisting of two attributes: bizTransaction and biz-
TransactionType.

Next step, we create object views based on these objects
types and materialize information from separate tables.

create view bizLocation_view of bizLocation_type
WITH OBJECT IDENTIFIER(bizLocationID) as select
b.*,cast(multiset(select attr_name,attr_value)

from bizLocation_ext al
where al.bizlocationid=b.bizLocationID)

as attr_list_type) as attr_list,
cast(multiset(select child

from bizLocation_href bh
where b.bizLocationID = bh.parent)

as children_table) as children
from bizLocation b;

Again, we apply inheritance relationship among the ob-
ject views materializing events. The root object view EPCI-
SEvent is created based on EPCISEvent Type and populated
by the data coming from table EPCISEvent Table (which is
nominal and supposed to contain no data records). Other
event views base themselves on their corresponding object
types and tables and inherit this the root view.

create or replace view EPCISEvent of EPCISEvent_Type
as select * from EPCISEvent_Table;

create view ObjectEvent of ObjectEvent_Type
under EPCISEvent as

select eventTime,recordTime,epclist,action,
bizStep,disposition,readpoint,bizLocation,
cast(multiset(select distinct l.bizTransactionId,



t.type from ObjectEvent_TransList l,BizTransaction t
where bl.ObjectEventID = l.ObjectEventID and

l.biztransactionid=t.biztransactionid)
as bizTransaction_Ref_table) BizTransactionList

from ObjectEvent_table bl;

We continue this way until we have the generation hier-
archy we want.

5 EPCIS Queries

The EPCIS specification requires to handle two prede-
fined queries that support simple ways for accessing appli-
cation to retrieve EPCIS event instances and vocabulary el-
ements: SimpleEventQuery and SimpleMasterDataQuery.
When clients want to use one of the predefined queries,
they specify its name and an appropriate list of parameters
in form of pairs (attribute name, attribute value). EPCIS
based itself on the query name and then processes the pa-
rameter list to return the expected data. For queries on EPC
events, EPCIS has to have the ability to retrieve instances
in an inheritance chain. The returned events carry as much
semantics as they were supposed to have when they were
pushed to EPCIS. In this section, we prove how our model
successfully answered these requirements by using a simple
illustrated query: ”find all events that occurred at location
L1 or L2 from time T1 to T2”.

5.1 Simple Queries from EPCIS specification

5.1.1 SimpleEventQuery

This kind of query retrieves all the event instances that sat-
isfy the predicates implied in the parameter list which can
be summarized as below:

• EventType – the event types we need to query

• (GE(GT)(LT)(LE)(EQ) fieldName,value)– events
whose field named fieldName is greater than or equal
to the value specified in the parameter

• (MATCH fieldName, value list)– events whose field
(which is a collection of EPC) named fieldName con-
tains one of the values in the value list.

• EQ fieldName is similar to MATCH, except that field-
Name is not a collection.

• EQ bizTransaction type – events which have a trans-
action list containing a transaction whose type is equal
to type.

• WD fieldName – events whose field named fieldName
matches one of the specific values or is a direct or in-
direct descendant of one of the specific values.

• HASATTR fieldName,
EQATTR fieldName attributeName – events whose
field named fieldName is a vocabulary element which
has an attribute whose name matches one of the
specific value. Or the attribute name is attributeName
and its value matches one of the specific values.

To answer the illustrated query, we specify the
query name as SimpleEventQuery and the parame-
ter list as (EQ bizLocation, ’L1’),(GE eventTime, ’T1’),
(LE eventTime, ’T2’). We place the query on the root view
EPCISEvent to retrieve all events in the inheritance chain.
The corresponding query statement has this following form:
SELECT VALUE(e) FROM EPCISEvent e WHERE predicates. Pred-
icates are generated specifically for each specialized event
types. Therefore, the first thing we do is to retrieve all event
types in the generalization hierarchy. We query the data dic-
tionary recursively to have this job done.

SELECT DISTINCT TYPE_NAME FROM ALL_TYPES
START WITH owner = ’EPCISADMIN’ AND

type_name = ’EPCISEVENT_TYPE’
CONNECT BY PRIOR type_name = supertype_name

AND PRIOR owner = supertype_owner;

Then we eliminate all event types that do not have event
fields bizLocation and eventTime to prevent our system from
wasting resource for processing unnecessary event types.
The next step, we generate the predicates to filter out events
that does not meet the requirements.

With parameter (GE eventTime,’T1’), we map the upper-
case operator string to appropriate logical operator and
form the predicate for each event type, for example (TREAT

VALUE(p) AS ObjectEvent Type).eventTime>=’T1’. Similarly, pa-
rameter(EQ bizLocation,’L1’) is mapped to this predicate

(TREAT VALUE(p) AS ObjectEvent Type).bizLocation=’L1’

By starting the query from the root event and placing
predicates on each specialized event, we can answer easily
the SimpleEventQuery.

5.1.2 SimpleMasterQuery

SimpleMasterQuery retrieves the information about the vo-
cabularies. Generating query statements for this query can
be achieved in a similar manner as for SimpleEventData-
Query.

6 Experiments

We finished the first prototype of EPCIS for industrial
enterprises based on the requirements posed in the EPCIS
specification. This prototype included the two standard
interfaces and a efficient repository which are mentioned
mainly in this paper. Currently we have no existing RFID
benchmark for our work. Therefore, we implemented an
event generator in Java that produced events encoded in
XML documents and pushed them up to EPCIS. EPCIS



catched and stored these events in the repository. We used
Oracle 10g for the data repository and Java for implemen-
tation. We predefined two simple queries: SimpleEvent-
Query and SimpleMasterDataQuery (section 5.1) as rec-
ommended in the EPCIS Specification and let the EPCIS-
accessing applications request these queries and have the
answers on-demand. These applications can also register
the queries and retrieve the result periodically according to
the schedules provided.

7 RELATED WORK

RFID technology makes a fast progress in recent years
and promises a bright future of labor cost reduction, busi-
ness process automation and inventory inaccuracy reduc-
tion, etc. However, there are many challenges for data man-
agement we need to consider when deploying this technol-
ogy [6][7][8]. Many researchers devotes their time to find
solutions for these problems including building warehouse
model [9][10], cleansing anomalies in RFID reads[11], us-
ing bitmap datatype for representing collections of EPCs
[12]. There is also works on building a efficient data model
for EPCIS repository that we already summarized in sec-
tion 2.4.

Besides researchers, many IT organizations have in-
vested in building RFID platforms including Sun Java Sys-
tem RFID Software [3], Oracle Sensor EdgeServer [13],
IBM WebSphere RFID Premises Server [14], Sybase RFID
Solutions [15], etc. These platforms have a similar archi-
tecture and handle all the complexity from the RFID physi-
cal world, presenting to the higher level applications a sim-
ple interface. Nowadays, these platforms also includes their
own repositories for data storage. However, the data models
are up to each organization as long as EPCIS can respond
the requirements for system integration and data exchange.

Mentioned mostly in this paper is the EPCIS Specifi-
cation proposed by EPCGlobal, the current EPC standard
Group, that gave solution to most issues related to EPCIS
data and standardized interfaces for disparate applications
to share data, both within and across enterprise.

8 Conclusions

In this paper, we have proposed a strong data model
for the EPCIS repository that is rich in semantics and
has all prominent features from both relational and object-
relational approaches. This model handles various kinds of
data and relationships efficiently. Vocabularies in master
data share the same general meta-data model with high for-
mality. Dynamic data are modeled as temporal events in
generalization hierarchy that is easy to extend more event
types and look back on the event history. We proved that

with this efficient model we can answer successfully the two
recommended queries. Moreover, objects moving together
and experiencing the same business processes are stored in
the same event so that we can reduce the data volume, es-
pecially in the system that objects usually move in large
groups.

Acknowledgement

This research was supported by the Ministry of Com-
merce, Industry, and Energy (MOCIE), Korea (10016466).

References

[1] EPCGlobal, http://www.epcglobal.com/, 2006.

[2] EPCglobal, EPC Information Services (EPCIS) Version 1.0
Specification, Mar. 2006.

[3] “Sun java system RFID software,” http://sun.com/rfid, 2004.

[4] P. L. Fusheng Wang, “Temporal management of rfid data,”
In Proc. of VLDB, 2005.

[5] M. Harrison, “EPC information service - data model and
queries,” White paper, Auto-ID Centre for Manufacturing,
University of Cambridge, February 2003.

[6] S. R. Suarshan S. Chawathe, Venkat krishnamurthy and
S. Sarma, “Mananaging rfid data,” in Proc. of VLDB, 2004.

[7] C. Hanebeck, “Managing data from rfid and sensor-based
networks,” GlobeRanger Corporation, Tech. Rep., 2003.

[8] M. Palmer, “Seven principles of effective RFID data
management,” Progress Software’s Real Time Division,
http://www.progress.com.mx/realtime/docs/articles/, Tech.
Rep., 2004.

[9] X. L. D. K. Hector Gonzalez, Jiawei Han, “Warehousing and
analyzing massive RFID data sets,” in Proc. of VLDB, 2006.

[10] X. L. Hector Gonzalez, Jiawei Han, “Flowcube: Construct-
ing RFID flowcubes for multi-dimensional analysis of com-
modity flows,” in Proceedings of the 22nd International
Conference on Data Engineering, 2006.

[11] M. J. F. Shawn R. Jeffery, Minos Garofalakis, “Adaptive
cleaning for RFID data streams,” in Proc. of VLDB, 2006.

[12] T. C. J. S. Ying Hu, Seema Sundara, “Supporting rfid-based
item tracking applications in oracle DBMS using a bitmap
datatype,” In Proc. of VLDB, 2005.

[13] Oracle sensor edge server, http://www.oracle.com/
technology/products/iaswe/edge server/index.html, 2006.

[14] Websphere rfid premises server, http://www.ibm.com/
software/pervasive/ws rfid premises server/, December
2004.

[15] Sybase rfid solutions, http://www.sybase.com/rfid, 2005.


