
Query Predicate Preprocessing in Wireless Sensor Networks

Min Meng1, Hui Xu1, Byeong-Soo Jeong2, Sungyoung Lee1
Department of Computer Engineering

Kyung Hee University, Suwon, South Korea
E-mail: 1{mengmin,xuhui, sylee}@oslab.khu.ac.kr,2jeong@khu.ac.kr

Xiaobo Fan

School of information
Renmin University of China, 100872, Beijing, China

E-mail: xbfan@ruc.edu.cn

Abstract

With the developments of related techniques in
telecommunication and computer sciences, wireless
sensor networks have been used more and more
widely. While sensor nodes in wireless sensor networks
have very limited memory spaces and power. In this
paper, we propose a new method to preprocess the
query predicates. The size of the relational table can
be further reduced using the aggregated query
predicates. The reduced relational table can be stored
on the sensor nodes. This may cause false positive but
definitely no false negative. When the required data
are sent back to the sink, we can do join operation
between the real query predicate and the relational
table again, and eliminate the redundant data.

1. Introduction

With the developments of related techniques in
telecommunication and computer sciences, wireless
sensor networks have been used more and more widely
and closely to our everyday life. The examples include
habitat monitoring, environmental monitoring and
ubiquitous healthcare system. The main roles of the
sensor nodes are sensing, communication and
computation. While in general the sensor nodes in
wireless sensor networks have very limited memory
spaces and power. So the relational table may be too
large to store on every sensor nodes. Our idea comes
from first we eliminate part of the redundant data in the
relational table. Then it is suitable to store on the
sensor nodes. We can preprocess the query predicates,
using the query predicates to cut the size of the
relational table.

In this paper, we propose a new method to
preprocess the query predicates. The size of the
relational table can be further reduced using the
aggregated query predicates. The reduced relational
table can be stored on the sensor nodes. This may
cause false positive but definitely no false negative.
False positive means the results may include the
redundant data which we don't want but the results
include all the possible answers. False negative means
we may eliminate some useful data. When the required
data are sent back to the sink, we can do join operation
between the real query predicate and the relational
table again, and eliminate the redundant data.

The remainder of the paper is organized as follows.
In section 2 we introduce the related works. In section
3, we propose the method to preprocess the query
conditions. In section 4 we conclude the paper and
discuss future works.

2. Related works

Lots of methods and researches are dealing with
energy efficient issues and to prolong the lifetime of
the wireless sensor networks [4-15]. Data management
in wireless sensor network is a increasing research
topic [2], [4]. Saving energy in data transmission is a
major topic in wireless sensor network and lots or
routing protocols are proposed [8], [9], [10], [14]. In
TinyDB[3], the sensor nodes are formed into a routing
tree. Each node in the network chooses one node as its
parent, which is one network hop closer to the root
than it is. When a node answers query, it sends to its
parent, parent forward it to its parent, until the data
reach the root. When the query comes, it is distributed
to the sensor nodes. Every time the node produces data
tuples, the data tuples are filtered by expression and the

2007 International Conference on Multimedia and Ubiquitous Engineering(MUE'07)
0-7695-2777-9/07 $20.00 © 2007

nodes pass results up the routing tree, aggregating with
the intermediate nodes if necessary.

In naïve join algorithm, the sensor nodes send all
tuples to the root; then perform join at the root, as
shown in figure 1. A routing tree is formed first, 1 to 7
are sensor nodes. The relational table is stored at the
root. When a new tuple x is created at sensor node 7, it
is sent to the parent of node 7, i.e. 5, then passed to the
root. At last the new tuple joins with the relational
table.

Root

1
2

5

7 6

4 3

A
B
C

x

x

∞

x

x

Figure 1 Naïve join algorithm

In ideal join algorithm, the whole join table is sent

to all the sensor nodes. When a new data tuple is
created, perform join at the sensor node. But the severe
node memory constraints limit the size of the relational
table. As shown in figure 2. The relational table is
stored at every sensor node from 1 to 7. When a new
data tuple is created at node 7, it can immediately join
with the relational table. Due to the limited memory
spaces of the sensor nodes, this method is hard to be
realized.

Root

1
2

5

7 6

4 3

x ∞

A
B
C

A
B
C

A
B
C

A
B
C

A
B
C

A
B
C

A
B
C

Figure 2 Ideal join algorithm

In REED algorithm [2], three distinct phases are

included in this in-network algorithm: group
formation, table distribution, and query processing.
The sensor nodes are formed into groups. In each
group, every sensor node stores portion of the
relational table. The sensor data tuples are sent to every
member of the group, as shown in figure 3. Two
groups are formed. One group has members 1, 3, 4.
The other group has members 5, 6, 7. Sensor nodes 1,
3, 4 of group one store part of the relational table
respectively. Sensor nodes 5, 6, 7 of group two store
part of the relational table respectively. When a new
data tuple x of sensor node 7 is created, it do join with
every part of the relational table in this group.

2007 International Conference on Multimedia and Ubiquitous Engineering(MUE'07)
0-7695-2777-9/07 $20.00 © 2007

Root

1

43

8

2

5

76

A
B

C

D

A

B

C

D

A

B

C

D

x

x
x

 Figure 3 REED algorithm

Based on these former works, we can first eliminate

the redundant data so that we can reduce the size of the
relational table. We can process the query predicates or
the query conditions first.

3. Query predicate preprocessing

In this section, we discuss the detail of how to
preprocess the query predicates.

We make the following assumptions about the
sensor network:

1) A routing tree is established in the sensor
network.

2) The root is the base station, and the base station
assembles partial results from nodes in the
network, completes query processing and
displays results to the user.

3) Multiple applications can simultaneously send
a number of queries to the sensor network.

Suppose we have a relational table T, as shown in
table 1, a, b are attributes of table T.

Table 1 relational table T

a b

1 25

2 29

3 23

4 21

5 28

6 17

7 19

8 20

9 24

10 29

11 17

12 26

There are two queries coming at the same time.

Query 1 requires to return a's values between 1 and 5.
Query 2 requires to return a's values between 4 and 10.
Such two queries might look like:

Query 1 Select a
from T
where 1<T.a<5

Query 2 Select a
from T
where 4<T.a<10

We can combine these two queries first: 1<T.a<10.

We use relational algebra to reduce the size of the
relational table.

)]([10.1 TaaT Π<<σ
Then the relational table T becomes the table T'

shown in table 2 with only attribute a and a’s value
from 1 to 10.

Table 2 relational table T'

a

1

2

3

4

5

6

7

8

9

10

Compare the sizes of table T and T’, apparently the

size of T’ is largely reduced and much smaller than T.
We can store this table T' on the sensor nodes or we

2007 International Conference on Multimedia and Ubiquitous Engineering(MUE'07)
0-7695-2777-9/07 $20.00 © 2007

can further split the table T' to store the portions on the
sensor nodes according to REED algorithm.

Using this method may cause false positive. When
the data is sent to the base station, we should do join
operation again, and send the real results to the clients.

4. Simulation

In this section, we describe the flow chart of the
query predicate preprocessing method.

Create a routing tree of the WSN

Preprocess the queries

Send results to the clients

Reduce the size of the relational table

Store the table on sensor nodes

Create a new data tuple

Join with the reduced table

Join with the table at the root

Figure 4 flow chart of the query predicate preprocessing

method

5. Conclusions and future works

The former works on query processing in sensor
networks only deal with the split of the relational table.
Our method is to eliminate the redundant data from the
relational table by preprocessing the queries. The size
of the table can be reduced dramatically. Then we can
split the table or store the whole table on the sensor
nodes. But this method may cause false positive. After
the data is sent to the base station, another join should
be done to get the final results.

 We will concrete the model of the method in the
near future and experiment about the performance.

References

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam,
and E. Cayirci, “A survey on sensor networks,” IEEE
Communication Magazine, Vol.40, No.8, 2002,
pp.102-114.

[2] D. J. Abadi, S. Madden, and W. Linder, "REED:
Robust, Efficient Filtering and Event Detection in
Sensor Networks", Proc. of the 31st VLDB conference,
Trondheim, Norway, 2005, pp. 769-780.

[3] S. Madden, M. Franklin, J. Hellerstein, and W.
Hong. The design of an acquisitional query processor
for sensor networks. In SIGMOD, 2003.

[4] D. Abadi, et al. REED: Robust, Efficient
Filtering and Event Detection in Sensor Networks. In
technical report, MIT-LCS-TR-939, 2004.

[5] Daniel Abadi, et al. An Integration Framework
for Sensor Networks and Data Stream Management
Systems..In Proc. of VLDB, 2004.

[6] Daniel Abadi, et al. The Design of the Borealis
Stream Processing Engine.In Proc. of CIDR, 2005.

[7] Philip A. Bernstein, Dah-Ming W. Chiu, Using
Semi-Joins to Solve Relational Queries. Journal of the
ACM, 28(1):25-40, 1981.

[8] W. Yu, T. Le, Dong Xuan and W. Zhao.: Query
Aggregation for Providing Efficient Data Services in
Sensor Networks, in Proc. of IEEE Mobile Sensor and
Ad-hoc and Sensor Systems (MASS), October 2004

[9] Ian D. Chakeres and Elizabeth M. Belding-
Royer.: AODV Routing Protocol Implementation
Design. WWAN, 2004

[10] C. Intanagonwisat, R. Govindan, and D. Estrin.:
Directed Diffusion: A Scalable and Robust
Communication, In Proceedings of ACM
MobileCom’00, August 2000

[11] X. Li, Y. J. Kim, R. Govindan, and W. Hong.:
Multi-dimensional Range Queries in Sensor Network,
In Proceedings of ACM SenSys’03, Nov., 2003

[12] H. O. Tan, and I. Korpeoglu.: Power Efficient
Data Gathering and Aggregation in Wireless Senor
Network, In Proceedings of ACM SIGMOD’03,
Special Section on Sensor Network Technology and
Sensor Data Management, 2003

[13] N.Sadagopan, B.Krishamachari, and A.Helmy.:
Active Query Forwarding in Sensor Networks,
Accepted to Journal of Ad-hoc Networks, ELSEVIER,
August, 2003

[14] Samuel Madden, Michael J. Franklin, Joseph
M.Hellerstein, and Wei Hong.: TAG: a Tiny
Aggregation Service for Ad-Hoc Sensor Networks.
OSDI, 2002

[15] Yong Yao and Johannes Gehrke.: Query
Processing for Sensor Networks. CIDR, 2003

2007 International Conference on Multimedia and Ubiquitous Engineering(MUE'07)
0-7695-2777-9/07 $20.00 © 2007

